A Multistage Theoretical Model To Characterize the Liquid Level During Steam-Assisted-Gravity-Drainage Process

Author:

Yang Yang1,Huang Shijun1,Liu Yang2,Song Qianlan1,Wei Shaolei1,Xiong Hao1

Affiliation:

1. China University of Petroleum, Beijing

2. Research Institute of Petroleum Exploration & Development

Abstract

Summary The technology of steam-assisted gravity drainage (SAGD) with a dual horizontal well pair has been widely adopted in thermal recovery for heavy oil in recent years. However, the close distance between injector and producer makes it easy to cause steam breakthrough, which means lower thermal efficiency as well as higher investment. It is generally acknowledged that there is a vapor-liquid interface between the injector and producer. A suitable liquid level is desired to prevent steam from being produced directly; otherwise, an overly high liquid level would influence oil productivity or even submerge the injector. The existence of a liquid level generates a temperature difference (i.e., subcool) between two wells. Subcool has widely been used to characterize the liquid level in research, yet it is inaccurate. Further studies are still needed on how to maintain a suitable and stable liquid level in SAGD development. In addition to the heat-loss model and geometric features of the steam chamber (SC), mass conservation, energy conservation, and gravity-drainage theory are used to develop a multistage mathematical model for liquid-level characterization during the SAGD process. The new model is validated against both field data and simulation results. On the basis of this model, an optimal production/injection ratio (PIR) at different times could be calculated to maintain a stable liquid level above the producer, avoiding steam channeling accordingly. Besides, the model can also be used to predict optimal steam-injection rate under constant-pressure injection. Other SAGD dynamic performance predictions, such as SC expansion speed, could also be derived from this model. In addition, recommendations for liquid-level adjustment are offered on the basis of field conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3