Advances in Rock Petrography: Image Processing Techniques for Automated Textural Thin Section Analysis

Author:

Mokhles Mezghani1,Fatai Anifowose1,Mohammed Masrahy1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Point counting is time consuming and requires extensive geologist/petrographer effort. In addition, point counting results are subjective and depend on the petrographer's knowledge and expertise. In this work, we introduce a fully automated workflow for thin section textural analysis in clastic rocks, using high resolution petrographic images of the thin sections acquired with a digital camera mounted on an optical microscope. This innovative workflow reduces the thin section textural analysis turnaround time and provides an objective and consistent analysis. The strength of this workflow resides in its high level of automation, which offers thin section analysis tool in much less time compared to the conventional point counting. The workflow is fully automated to process and analyze the entire thin section without manual involvement. The kernel of this workflow is based on a region growing algorithm for individual grain identification. An iterative loop, built on the top of this kernel, allows the completely automated scan of the entire thin section. The workflow was first rigorously validated for a single thin section. Grain by grain, results from the automated analysis are compared to the petrographer (point counting) analysis. Excellent agreement between the two analyses was obtained (porosity and grain size). The efficiency of the analysis was largely in the favor of the automated approach (3 minutes) compared to the 2 hours needed by the petrographer for this counting exercise (approximately 150 grains). This first validation test proved the workflow's accuracy and the efficiency. This workflow was then extensively validated using large set of thin sections (50 thin sections) showing an excellent qualitative agreement with conventional point counting. This second validation test proved the robustness and the efficiency of the workflow.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3