Discussion on the Effects of Temperature on Thermal Properties in the Steam-Assisted-Gravity-Drainage (SAGD) Process. Part 1: Thermal Conductivity

Author:

Irani Mazda1,Cokar Marya1

Affiliation:

1. Suncor Energy

Abstract

Summary Steam-assisted gravity drainage (SAGD) is the preferred thermal-recovery method used to produce bitumen from Athabasca deposits in Alberta, Canada. In SAGD, steam injected into a horizontal injection well is forced into the reservoir, losing its latent heat when it comes into contact with cold bitumen at the edge of a depletion chamber. Heat energy is transferred from steam to reservoir, resulting in reduced bitumen viscosity that enables the bitumen to flow toward the horizontal production well under gravity forces. Conduction is the main heat-transfer mechanism at the edge of the steam chamber in SAGD, and reservoir thermal conductivity is a key parameter in conductive-heat transfer. Conductive-heat transfer occurs at higher rates across reservoirs with higher thermal conductivity, which in turn affects the temperature profile ahead of the steam interface. Consequently, a reservoir with higher thermal conductivity will result in higher reservoir-heating rates, which lead to higher oil rates. However, when oil-sand reservoirs are heated from reservoir temperature to steam-chamber temperature, the thermal conductivity can decrease up to 25%, which affects the temperature profile and conductive heating at the edge of the steam-saturated zone known as the steam chamber. This study provides an analytical model that includes a temperature-dependent thermal-conductivity value. This novel approach is the first of its kind to incorporate a temperature-dependent thermal-conductivity value within an analytical SAGD model to predict temperature front, oil production, and steam/oil ratio (SOR). Furthermore, if Butler's (1985) model is used, the results reveal that the arithmetic average thermal-conductivity values at reservoir and steam temperatures could be used for temperature-profile prediction, which would result in an error of less than 1% for the range of SAGD applications. The results of this study suggest that the minimum error for oil rates depends on the viscosity/temperature correlation. The optimum thermal conductivity should be calculated at the temperature that gives dimensionless temperatures [i.e., (T−Tr)/(Tst−Tr)] varying between 0.75 to 0.85 for m-values [Butler-suggested power constants (Butler 1985, 1991; Butler and Stephens 1981)] between 3 and 5.6. This study also investigates the effect of including temperature-dependent thermal conductivity on SOR variation and suggests that for both laterally expanding and angularly expanding reservoirs the SOR is independent of the thermal conductivity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3