Making Sense of Why Sometimes Logs Do Not See Cement in the Annulus

Author:

Kalyanraman Ram Sunder1,Van Kuijk Robert1,Hori Hiroshi1

Affiliation:

1. Schlumberger

Abstract

Abstract Ultrasonic and sonic logs are commonly used to evaluate the quality of cement placement in the annulus of a pipe and its potential to perform as a barrier. In some cases, we observe that the log response is in conflict with the expectations on the outcome of the cementing job that was executed without any major issues. The log sometimes does not see the cement! This apparent disagreement if not resolved could potentially lead to costly and unsuccessful attempts to remediate the cement sheath. We highlight reasons why sometimes logs may not see the cement and implement new workflows that not only recognize these factors but also account for it in the cement sheath evaluation. The ability to recognize the existence of a wet or dry micro-annulus is critical for cement sheath evaluation and is discussed through two new interpretation workflows using ultrasonic and sonic logs. Firstly, we introduce a new ultrasonic (TIGHT model) interpretation workflow that improves discrimination of light-weight solids from displaced muds and enables identification of dry micro-annulus situations. Secondly, we introduce a new integrated workflow that combines sonic amplitude / attenuation with ultrasonic measurements in the acoustic impedance (AI) space (Sonic vs ultrasonic acoustic impedance). Through this approach, we demonstrate how we can identify cement that is well bonded and discriminate from those with a dry or a wet micro-annulus. The workflows were applied to data acquired in wells where we compared the results of conventional interpretation approaches as well as those discussed in the two workflows. The gap caused by the detachment of cement from casing (de-bonded cement), either wet or dry micro-annulus, can affect the log responses differently and sometimes significantly. The effect of micro-annulus on logs can be recognized which then facilitates correct assessment of the cement sheath behavior. We note that the log response in the presence of a dry micro-annulus may be different to that for a wet micro-annulus. In the case of a dry micro-annulus, even with relatively smaller gaps between cement and casing, conventional approaches to interpretation of the sonic and ultrasonic logs can completely miss "seeing" the cement. We observe that the integration of ultrasonic and sonic measurements through these workflows has the potential to improve the quality and reliability of cement evaluation when cements de-bond from casing. The ability to do so with existing ultrasonic and sonic technology not only helps improve confidence on cement sheath evaluation but also has the potential to reduce unwanted and costly remediation decisions.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3