Coupling Psychological Factors With Machine Learning to Improve Rig Technical Training

Author:

Curina Francesco1,Abdo Elia1,Asokan Ajith1,Mustapha Hadi1

Affiliation:

1. Drillmec Spa.

Abstract

Abstract Technical training is an essential activity for optimizing rig operations. Recently, the use of drilling simulators has revolutionized the way training is done and, accompanied with on-site assistance, it has ensured near optimal performance from the trained crews. This paper explains how machine learning and physiology can be used to improve rig technical training by monitoring the operator's stress, identifying the key operations where situational awareness is low and targeting these operations with dedicated exercises. The developed methodology is based on a study of human psychological indicators captured through light biometric devices. These indicators are fed to a machine learning algorithm that calculates a stress index for the observed operator and uses this index to identify key operations where the operator lacks focus, is under high stress or feels a lack of preparation. The measured indicators are skin temperature, specific face movements, heart rate, and sweat. The model uses machine vision to identify key physiological parameters and a convolutional neural network to interpret them. Finally, a third algorithm correlates the stress index to specific operations. The system can be used either in simulation environment or on the rig itself during operational studies. The primary results show high detection accuracy with minimal errors. Using this methodology for well control simulation, the main periods of high stress and low concentration were correctly identified. The repeated tests showed that different drillers or supervisors respond differently to the situation and may be stressed out by different operations. This highlighted a key drawback of the training that focuses on the same main operations for all participants. By customizing the second training session for each participant's needs, the high stress levels were significantly reduced. From the initial trials, a key point needed to be highlighted: for the study to be as non-intrusive as possible, the biometric devices used for monitoring stress need to be as light as possible. This led to a review of the devices used and a compromise between accuracy and lightness. As with advanced military training, targeted training for drilling rig crews can deeply impact the outcome of the training and preparedness of the crew. Today, biometric devices combined with machine learning models finally, allow for an accurate detection and evaluation of human stress. Using this analysis methodology to customize training will prove essential soon and may revolutionize the way rig crews are trained.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3