Semianalytical Model for Monitoring Fracture Liquid-Loading in Vertical Fractured Gas Wells

Author:

Wang Zhipeng1ORCID,Ning Zhengfu2ORCID,Guo Wenting2ORCID

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) (Corresponding author)

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing)

Abstract

Summary Liquid loading seriously affects gas wells production and even causes gas wells abandonment. Many researchers still focus on correcting a critical liquid-loading flow rate to alleviate these problems. However, they still cannot reasonably be explained. Gas flow rate is higher than the critical liquid-loading flow rate, but liquid loading can still occur. Therefore, until an accurate critical fluid-loading flow rate is discovered, we should monitor the fluid-loading phenomenon to prevent it from affecting production gas wells’ performance. In this work, a fracture liquid-loading monitoring (FLLM) model is proposed and solved for the timely monitoring of fracture liquid-loading (FLL) positions and volume. The Newman product and Green function methods are used to develop and solve the FLLM model. The fracture is discretized into 2nxnz grids to describe an FLL volume and position. The numerical simulation method is used to verify the accuracy of the FLLM model. As a result, four innovative flow regimes, including fracture cavity liquid-loading flow, fracture root liquid-loading flow, transitional flow considering fracture cavity liquid-loading flow, and transitional flow considering fracture root liquid-loading flow, are identified on the pressure response curves. The pressure response of the same gas well at different times is well matched by the model in this paper, and the obtained parameters are more reasonable. The FLLM model can correct for magnified permeability, shortened half-length, and magnified wellbore storage coefficient. In conclusion, the FLLM model is established to monitor FLL, and alert engineers to remove liquid loading on time to prevent water from suddenly rushing into a wellbore and causing gas wells abandonment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3