The Evolution of UDAR Technologies for Risk Mitigation in Geostopping Applications

Author:

Sinha Supriya1,Antonsen Frank1,Clegg Nigel2,Walmsley Arthur2,Vicuña Brígido2,Danielsen Berit Ensted1,Constable Monica Vik1,Prymak-Moyle Marta1

Affiliation:

1. Equinor

2. Halliburton

Abstract

Abstract Complications during drilling and completion operations caused by subsurface geology have a significant impact on rig time, cost, assets, and even human life, if risk and incident severity is not well understood. Risk and tolerance evaluation processes are essential for completing successful drilling programs and final casing designs. While log-based correlation methodologies can be used, they are limited to scenarios where appropriate offset well data control exists, and they only provide information after the hole has been drilled. The development of technologies that provide warning of a hazardous zone before it is penetrated are therefore desirable. Ultradeep Azimuthal Resistivity (UDAR) tools are deployed for such scenarios and provide high value when used in integrated interpretations to identify hazards ahead of drill bit. Seismic data is used as a first step to predict and map subsurface characteristics such as pressure regimes, faults, and fluid contacts. Offset and pilot hole data further complements assessment of these features enabling more precise risk assessment. Commonly, near-bit measurements such as resistivity and gamma ray have been used for these correlations in conjunction with sonic and density measurements. The mapping of horizons from seismic data can have 10s to 100s of meters of vertical uncertainty, while offset data in exploration campaigns is typically sparse and near-bit measurements require drilling into the zone of risk. Pilot holes therefore become a costly necessity, however, if sufficient resistivity contrast exists UDAR can be used for remote boundary mapping, without drilling into the geohazards, thus reducing cost and de-risking the operation. This paper presents several case studies where UDAR technology was deployed in near vertical to horizontal wells to map geohazards before they were penetrated using different techniques, allowing optimization of the stopping point in diverse scenarios. This includes a case where the technology was used to geostop in a horizontal section prior to penetration of a major structural sealing fault plane that bounded the productive reservoir interval. UDAR has been successfully used to manage seismic uncertainty, support the decision-making process for core point selection, reduce exposure of unstable overburden shales and geostop above abnormal and subnormal pressure zones. Mapping a geohazard and proactively stopping at a particular depth is a complex operation and evaluation of the rock properties with respect to the sensitivity of the measurements and uncertainty in the models is important. Limitations in measurement sensitivity can lead to potential masking of top reservoir picks and increased uncertainty in both boundary positions and the inverted resistivity. Improvements such as new UDAR transmitter designs being embedded into Rotary Steerable Systems allow near-bit placement of this technology, demonstrating the continual evolution of this technology and how it assists risk mitigation in geostopping applications.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3