Effect of Crystal Modifiers and Dispersants on Paraffin-Wax Particles in Petroleum Fluids

Author:

Sun Minwei1,Naderi Khosrow2,Firoozabadi Abbas1

Affiliation:

1. Reservoir Engineering Research Institute

2. Tenex Technologies

Abstract

Summary Petroleum fluids from shale light-oil and gas/condensate reservoirs generally have a high content of normal paraffins. Paraffin-wax deposition is among the challenges in shale gas and oil production and in offshore flow assurance. Low-dosage chemical additives can be effective in paraffin-wax mitigation because of their high efficiency and economics. These additives are divided into broad categories of crystal modifiers and dispersants with vastly different molecular structures and mechanisms in wax-crystal-particle stabilization and wetting. This investigation focuses on the understanding of the differences in the aggregate size and morphology of chemical additives, and it centers on (1) wax-particle sedimentation from diluted petroleum fluids in vial tests, (2) wax-crystal-particle-size distributions and morphology by dynamic light scattering (DLS) and polarized-light microscopy, and (3) the wetting state from the effect of water. In two of the three petroleum-fluid samples used in this work, there is no visible precipitation at the bottom of the vials at temperatures below the wax-appearance temperature (WAT). The microscopic image of fluids along the length of the tube shows that the wax-particle size and intensity increase from top to bottom. To observe precipitation, we dilute the crude with a hydrocarbon such as n-heptane. The sedimentation of wax is then observed. The petroleum fluids used in this work have very low asphaltene content, and there is no complication from asphaltene precipitation. Our study shows that a small amount of crystal modifier and dispersant can reduce crystal-particle size to the submicron scale, and change the crystal morphology. We investigate the differences in the mechanisms of dispersants and crystal modifiers in bulk. Water, which is often coproduced with petroleum fluids, can increase the effectiveness of dispersants significantly by altering the wetting state of the wax-particle surface. Such enhancement is not found in crystal modifiers. Both additives affect the rheology of petroleum fluids.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3