Effect of Nanoparticles on Flow Alteration during CO2 Injection

Author:

Aminzadeh B..1,DiCarlo D. A.1,Chung D. H.1,Kianinejad A..1,Bryant S. L.1,Huh C..1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Surface-treated nanoparticles have been shown to stabilize CO2-in-water foam by adhering to the surface of CO2 bubbles and preventing their coalescence. However, to bring the nanoparticles from the bulk phase to CO2/water interface requires an input of mechanical energy. Co-injection of CO2 and an aqueous dispersion of nanoparticles at high rates is known to provide sufficient energy. However, this co-injection is less favorable because of the operational constraint, i.e., injectivity reduction. Here, we show that beneficial effect of nanoparticles, manifested as improved sweep efficiency, occurs even at low shear rates in a drainage displacement. We inject high-pressure liquid CO2 into sandstone cores initially saturated with brine containing suspended nanoparticles and compare the results with the case with no nanoparticle addition. The water saturation distribution was measured using CT scanning techniques. The results show that the nanoparticles increase sweep efficiency and reduce the gravity override compared to displacements without nanoparticles. The new mechanism described here provides a promising alternative for mobility control in CO2 floods.

Publisher

SPE

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3