Application of Neural Network Model for Prediction of Asphaltene Precipitation

Author:

Abedini A..1,Ashoori S..1,Saki Y..1

Affiliation:

1. Petroleum University of Technology

Abstract

Abstract The Precipitation and deposition of crude oil polar fractions such as asphaltenes in petroleum reservoirs reduces considerably the rock permeability and the oil recovery. Therefore, it is of great importance to determine "how" and "how much" the asphaltenes precipitate as a function of pressure, temperature and liquid phase composition. In present work, an Artificial Neural Network (ANN) model was designed and applied to predict the amount of asphaltene precipitation at a given operating condition. An extensive experimental data for the amount of asphaltene precipitation at various temperatures (293-343 K) was used to create the input and target data for generating the ANN model. The predicted results of asphaltene precipitation from ANN model was also compared with the results of some proposed scaling equations. The results revealed that scaling equations fail to predict the amount of asphaltene precipitation adequately for different ranges of temperature and dilution ratio, especially at lower values of dilution ratio. While an acceptable agreement between experimental data and predicted amount of asphaltene precipitation for all ranges of dilution ratio, solvent molecular weight and temperature was obtained through using ANN model.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3