Technology Update: New Intelligent Completion System Enables Compartment-Level Control in Multilateral Wells

Author:

Dyer Stephen1,Bouldin Brett2

Affiliation:

1. Schlumberger

2. Saudi Aramco

Abstract

Technology Update Although early inflow control devices and intelligent completions (ICs) were introduced almost 20 years ago, completion technology has not kept pace with advancements in drilling technology. Today, wells completed in multilayered reservoirs, multilaterals with compartments of varying pressure, and extended-reach drilling (ERD) with wellbores as long as 12 km are becoming common. In complex, hard-to-reach reservoirs and tighter formations, operators need to maximize reservoir contact in every well to optimize reservoir drainage and minimize costs. Yet the evolution of ICs has lagged, creating a technology gap with significant ramifications. IC reliability has been steadily increasing over the years, reaching more than 97% for the life of the well in many applications. Most permanent downhole monitoring and control solutions still consist of a separate “kit” of products rather than an integrated system. Traditional IC systems lack sufficient real-time measurements in individual producing zones to facilitate “cause and effect” decision making. Without detailed compartmental information and control in case of water or gas breakthrough, operators are forced to restrict production, intervene, and in some instances work over the entire well. Until recently, there has been no way to maintain production from other unaffected zones during the long diagnostic process of production logging, well testing, interpretation, and execution of an appropriate well intervention. The typical optimization cycle substantially raises operating costs while delaying vital production for weeks or months. Consider Saudi Aramco’s experience with ICs in remote oil fields, where tight formations and a shortage of suitable surface locations drove the need to dramatically increase reservoir contact per wellhead. Before 2007, the company had successfully drilled and completed a number of multilateral ERD wells, achieving more than 5 km (16,400 ft) of reservoir contact per well. These maximum reservoir contact (MRC) wells were completed with then state-of-the-art IC technology. Completions consisted of permanent downhole gauges (PDGs) and downhole flow-control valves (FCVs), which could be partially or fully opened or closed by hydraulic control lines from the surface. Monitoring and control stations were installed in the motherbore above the junction to each side lateral.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3