Quantification of Temperature-Dependent Sorption Isotherms in Shale Gas Reservoirs: Experiment and Theory

Author:

Yang Yun1,Liu Shimin2,Clarkson Christopher1

Affiliation:

1. University of Calgary

2. Pennsylvania State University (Corresponding author)

Abstract

Summary A critical component of natural gas in organic-rich shales is adsorbed gas within organic matter. Quantification of adsorbed gas is essential for reliable estimates of gas-in-place in shale reservoirs. However, conventional high-pressure adsorption measurements for coal using the volumetric method are prone to error when applied to characterize sorption isotherm in shale gas systems due to limited adsorption capacity and finer pores of shale matrix. Innovative laboratory apparatus and measurement procedures have been developed to accurately determine the relatively small amount of adsorbed gas in a Marcellus shale sample. The custom-built volumetric apparatus is a differential unit composed of two identical single-sided units (one blank and one adsorption side) connected with a differential pressure transducer. The scale of the differential pressure transducer is ±50 psi, a hundred-fold smaller than the absolute pressure transducer measuring to 5,000 psi, leading to a significant increase in the accuracy of adsorption measurement. Methane adsorption isotherms on Marcellus shale are measured at 303, 313, 323, and 333 K with pressure up to 3,000 psi. In addition, a fugacity-based Dubinin-Astakhov (D-A) isotherm is implemented to correct for the nonideality and to predict the temperature dependence of supercritical gas sorption. The Marcellus shale studied generally displays linear correlations between adsorption capacity and pressure over the range of temperature and pressure investigated, indicating the presence of a solute gas component. It is noted that the condensed-phase gas storage exists as the adsorbed gas on the shale surface and dissolved gas in kerogen, where the solute gas amount is proportional to the partial pressure of that gas above the solution. One of the major findings of this work is the experimental observation of the contribution of dissolved gas to total gas storage. With adsorption potential being modeled by a temperature-dependence expression, the D-A isotherm can successfully describe supercritical gas sorption for shale at multiple temperatures. Adsorption capacity significantly decreases with temperature attributed to the isosteric heat of adsorption. Lastly, the broad applicability of the proposed fugacity-based D-A model is also tested for adsorption data provided in the literature for Woodford, Barnett, and Devonian shale. Overall, the fugacity-based D-A isotherm provides precise representations of the temperature-dependent gas adsorption on shales investigated in this work. The application of the proposed adsorption model allows predicting adsorption data at multiple temperatures based on the adsorption data collected at a single temperature. This study lays the foundation for an accurate evaluation of gas storage in shale.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference74 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3