Numerical Coning Applications

Author:

Beveridge S.B.1,Coats K.H.2,Alexandre M.T.3

Affiliation:

1. International Cornputer Applications Ltd., Calgary, Alberta

2. International Computer Applications Ltd., Austin, Texas

3. Canadian Superior Oil Ltd., Calgary, Alberta

Abstract

Abstract An analysis of water or gas coning behaviour is particularly important in determining the future performance of gas reservoirs and thick oil reservoirs of the Rainbow-Zama- Virgo types. Investigations of coning in these reservoirs have only recently become practical. This paper describes results from two numerical coning studies - one a gas-water problem, the other a three-phase problem in a Virgo reef. The implicit numerical model used is described in detail. INTRODUCTION THE CONTROL OF GAS AND WATER CONING in petroleum reservoirs is essential in optimizing recovery and minimizing operational costs. Coning is the result of high-pressure gradients around the producing well which cause the oil-water contact to rise and the gasoil contact to depress near the wellbore. Gravitational forces tend to segregate the fluids according to their densities. However, when gravitational forces are exceeded by the flowing pressure, a cone of water and/ or gas will penetrate the producing interval. Only recently has it become practical to investigate coning as a non-steady-state flow phenomenon with heterogeneous reservoir properties. These investigations are now practical utilizing numerical coning models. Coning is simulated with a 2D radial (R – Z) grid system extending out from the wellbore to some external radius (Re). To obtain proper definition of the gas and water cones, a fine grid is used near the wellbore. The pore volumes of these interior grid blocks are typically 1 to 10 barrels, At a normal producing rate and with a reasonable time-step size, the fluid throughput per time step of the inner blocks is many times the pore volume of the blocks. This high throughput causes large saturation changes per time step and, in the past, these large saturation changes have caused model instabilities. Normally, in a reservoir simulator the transmissibilities governing flow between blocks and the production rates of oil, gas and water are calculated explicitly using the saturation conditions existing at the beginning of the time step. If explicit transmissibilities and production terms are used in a coning model, a practical time-step size will cause the predicted saturations to become unstable and the GOR's and WOR's to oscillate, These instabilities can be controlled by treating the transmissibilities and production terms implicitly rather than excplicity. The computation required per time step increases with a totally implicit model, but the resulting increase in the time-step size which can be taken more than offsets the greater computation requirements. The net result is a numerical model which can be used routinely, at low cost, on practical problems. The Appendix describes in detail the mathematics of this coning model. The following section describes two coning studies. The first case is a gas pool with an underlying aquifer. The second is a single-well bioherm reef being produced under primary depletion. Initially, it is without a gas cap, but it does have a small underlying aq Uifer, Both studies used a fully compressible threephase 2D radial model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3