Subsurface Safety Valves: Safety Asset or Safety Liability?

Author:

Busch J.M.1

Affiliation:

1. Arco Alaska Inc.

Abstract

Summary This paper summarizes the methods used to compare the risk of a blowout for a well completion with a subsurface safety valve (SSSV) to a completion without an SSSV. These methods, which could be applied to any field, include a combination of SSSV reliability and conventional risk analyses. The Kuparuk River Unit Working-Interest Owners recently formed a group to examine the risks associated with installing and maintaining SSSV's in the Kuparuk field. Considering Kuparuk field operating conditions, the group was charged with determining whether SSSV's are a safety asset or whether the numerous operating and maintenance procedures make them a safety liability. The results indicate that, for the Kuparuk River Unit, an SSSV becomes a safety liability when the mean time between SSSV failures is less than 1 year. Because current SSSV mean time to failure (MTTF) at Kuparuk is approximately 1,000 days, they are considered a safety asset Introduction The use of SSSV's in onshore North Slope development wells was adopted as a statutory requirement to prevent oil spills caused by casing collapse in a permafrost environment. The primary reason for installing an SSSV in a well completion is to reduce the risk of a blowout, an uncontrolled flow of well fluid to the environment. However, a number of wireline and workover operations specifically conducted to service SSSV's in an individual well are likely. These operations, in turn, represent additional risk of a blowout. A typical risk analysis was used to compare risk with and without SSSV'S. The steps of the analysis are as follows.Define the equipment system, in this case the two alternative well completions to be studied.Develop the possible failure modes that could affect the reliability of the system.Build a fault tree to describe these failure relations.Develop component failure rates for each branch of the fault tree, including the development of the relationship of SSSV availability to the other components of the fault tree.Calculate the total failure probability as a function of SSSV MTTF. Not all the component failure rates were derived easily because of the nature of the data required. Thus some of the failure rates are based on engineering judgment. This does not affect greatly the comparison of two very similar well completions, because the relative failure rate is more important than the absolute failure rate. When a component failure rate appeared to have significant influence on the results a range of values was used in the calculation. System Definition The standard production well completion for the Kuparuk field (Fig. 1) has a tubing-retrievable subsurface safety valve (TRSSSV) installed at approximately 2,000 ft [610 m] measured depth below the surface. In the rare event of a TRSSSV failure, the first repair method is by wireline manipulation. If this is unsuccessful, the TRSSSV is locked in the open position, and a wireline-retrievable subsurface safety valve (WRSSSV) is used as an insert inside the TRSSSV. If the WRSSSV fails, it can be retrieved and replaced by wireline operations. If the failed WRSSSV cannot be retrieved or repaired, however, a workover is required. A workover is required also in the event of a leak in the subsurface hydraulic control line. These Kuparuk field operational procedures were analyzed and used to develop the well-system model under study. System Failure Modes To analyze the completion reliability, the possible failure mechanisms were identified. These included completion equipment failure, operational failures, and several catastrophic events, such as drilling-rig derrick collapse, plane crash, and vehicle collision into wellheads. Certain plane crash, and vehicle collision into wellheads. Certain risks that could not be quantified-such as acts of war, acts of sabotage, and acts of God (earthquakes, etc.) were omitted from the study. Fault Tree Development The application of fault-tree risk analysis to well completion systems is well documented by Woodward. The reliability of a component or system of components is the probability that it will perform its functions for a specified probability that it will perform its functions for a specified time interval and is predicted generally by a single-parameter exponential distribution: (1) where R(t) is the probability the component will operate without failure for time period t under the stated operating conditions. JPT p. 1813

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Quantitative Evaluation Method for Failure Risk Factors of the High-Temperature and High-Pressure Downhole Safety Valve;Sustainability;2024-02-26

2. Risk Analysis of Completion and Production Systems;Transportation Systems and Engineering;2015

3. Workover Impact on Accidental Risk;Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering;2014

4. Risk Analysis of Completion and Production Systems;Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3