Improving Well Productivity through Openhole Frac-Pack Completion Design

Author:

Kamps Emil J.1,Chando Jesse M.2,Ellis Richard C.3

Affiliation:

1. ExxonMobil Production Company

2. ExxonMobil Development Company

3. Mullen Energy Corp., Consultant to ExxonMobil Development Company

Abstract

Abstract Formation damage due to fines migration after the onset of water production presents a major technical challenge for many sandstone reservoirs around the globe. Oftentimes, significant productivity impairment is observed shortly after water breakthrough. This is particularly true for the Chad Doba basin lower "M" and "A" Sand reservoirs where studies have shown that a major contributor to this damage mechanism is the fluid velocity near the wellbore. As a result, exponential decline in productivity index is typically observed over very short periods. To arrest the productivity impairment, various completion techniques were evaluated for ways to reduce the velocity of the produced fluids near the borehole. Typical completion designs employed to date have been cased hole gravel packs (including frac-packs) which enhances the velocity profile of the well as produced fluids converge to the perforations. Maximizing the reservoir to the wellbore interface reduces the velocity profile and conceptually prolongs the onset of formation damage caused by fines migration. Based on that conceptual model, openhole completion techniques were evaluated for feasibility. Upon analyzing the geology of the selected candidate, it became apparent that fracturing the formation was possible as it was a relatively thin amalgamated sand package. As a result, the openhole frac-pack concept became a practical option as it results in the lowest velocity completion possible by maximizing the reservoir surface flow area. Openhole frac-pack completion activities were executed in mid-2009 and well productivity has been sustained even after water breakthrough. This paper reviews initial openhole frac-pack design concepts, execution lessons learned, and well productivity performance.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3