Modelling of Non-Condensable gas Injection In SAGD Process - Important Mechanisms And Their Impact On Field Scale Simulation Models

Author:

Nourozieh Hossein1,Ranjbar Ehsan1,Kumar Anjani1

Affiliation:

1. Computer Modeling Group Ltd.

Abstract

Abstract Field-scale simulation of non-condensable gas injection in a hybrid SAGD process for the heavy oil and bitumen reservoirs requires a comprehensive numerical model that considers different mechanisms involved in the processes. The complexity of modelling such processes is due to the interrelation of oil-gas phase behavior and fluid transport mechanisms such as advection, dispersion, and dissolution. The non-condensable gas in the vapour phase is transported into the reservoir by the advection process which is dominantly controlled by the rock-fluid interaction parameters. The steam and non-condensable fluid in the gaseous phase may have different relative permeability and end-point saturations associated with their interaction with oil/liquid. The diffusion and dispersion of non-condensable gas control how it spreads within a phase and its dissolution into oil and water determines its transfer across phases. Although, it is still debated that non-condensable gas accumulates at the steam front reducing heat transfer into the oil phase and lowering oil production rate, some field production data show contrary results. That is, the co-injection of non-condensable gas with steam does not affect the oil production rate while it reduces the steam-oil ratio. The non-condensable gas may accumulate at the top of the reservoir providing an insulation effect, reducing heat losses to the overburden and increasing the thermal efficiency of steam. This study attempts to provide insights about field scale simulation of non-condensable gas injection in the hybrid SAGD process with a comprehensive numerical simulation model. Analysis will be presented regarding important mechanisms that should be considered, their impact on the process, and techniques to model them. Some of the important mechanisms that will be discussed are diffusion and dispersion, and solubility of gas in bitumen and water. The intent is to identify factors important to the modeling of these processes at field scale and how robust simulation models can be developed to replicate observed field behaviour.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3