Coupling Production and Injection Systems with Multiple Reservoir Models: A Novel Method of Optimizing Development Strategies in a Mature Giant Oilfield

Author:

Su Shi Jonathan1,Patacchini Leonardo2,Mohmed Farzeen2,Farouk Magdy2,Ouzzane Djamel2,Draoui Elyes2,Torrens Richard1,Amoudruz Pierre1

Affiliation:

1. Schlumberger

2. Abu Dhabi Marine Operating Company

Abstract

Abstract The building of an integrated asset model for a giant carbonate oil field located offshore Abu Dhabi, consisting of two separate subfields with common production and injection networks, is presented with selected use cases. Coupling is performed periodically at the wellhead, using a reservoir simulator in which the field manager controls the reservoir models by supplying well constraints and controls the network models by supplying well performance curves. Allocation strategies and pressure and flow constraints are imposed by the field manager, for which the different sub-models are black boxes; the models themselves are controlled hydraulically without embedded production or injection constraints. This explicit approach has been selected for its flexibility. In particular, by expressing rates at the surface-subsurface interface at standard conditions, it is possible for the two reservoir models to have different equations of state and different treatments of injected water salinity, while the surface models use a black-oil fluid description. This project required ensuring rate continuity at the transition from history to forecast for over 600 active production and injection strings, even when the reservoir and network models are not perfectly history-matched. This was achieved by introducing pressure shifts in each vertical flow performance curve to ensure continuity of the choking margins (i.e., differences between wellhead pressures and backpressures) and by overriding the default guide rate flow allocation method of the field manager to prevent abrupt changes in the production split of wells currently producing below potential. The use cases described here are based on an eight-year (2015–2023) drilling schedule followed by no further activity. We focus on assessing the impact on production and injection arising from: replacing pipelines or changing network topologies; relaxing the constraint of producing at initial solution gas-oil ratio with and without reduction of separator pressures; and redistributing or increasing the water injection capacity.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3