Interpretation of Nuclear-Magnetic-Resonance Response to Hydrocarbons: Application to Miscible Enhanced-Oil-Recovery Experiments in Shales

Author:

Dang Son T.1,Sondergeld C. H.1,Rai C. S.1

Affiliation:

1. University of Oklahoma

Abstract

Summary Estimation of total reserves in shale/gas and shale/oil reservoirs is challenging but critical. Different logging tools and core-evaluation procedures are used to address this challenge. Nuclear magnetic resonance (NMR) plays a vital role in understanding fluid content, rock/fluid interaction, and determination of pore-body-size distributions. Hydrocarbon (HC)-hosting pore systems in shale includes both organic and inorganic pores. Recoverable HCs include bitumen and light HCs. Their relative fractions are strongly dependent on thermal maturity. Regardless of detailed chemical characterization, “bitumen” is simply defined on the basis of mobility in this study. The apparent mobility of HCs depends on fluid composition, solubility, and reservoir temperature. Historically, NMR laboratory-calibration measurements (nominally, 2-MHz) on core are conducted at room temperature (25–35°C). This study highlights the importance of running NMR tests at reservoir temperature. Experiments were performed for both bulk fluids and fluid-saturated rock samples. The results show that, at a specific temperature, NMR responds only to the fraction of HCs present in the liquid phase. For routine NMR measurement, at 31°C, only the relaxation signals of compounds more volatile than C17 are acquired. Thus, the C17+ fraction would be invisible to NMR at room temperature, but perhaps not at reservoir temperature. This is critical to the interpretation of NMR log response within the early oil and condensate windows, in which C17+ can be a major fraction. Thus, engineers can underestimate movable HCs by using routine core data as a basis for interpretation. On the basis of NMR experiments for several oil samples, we observed that the T1–T2 distributions depend on the overall composition of total HCs and effective mobilities. The results also show that, in the case when both light and heavy HC fractions coexist in a single phase, they do not appear as different clusters in a T1–T2 distribution map. NMR parameters were used to monitor the amount, composition, and effective mobility of remaining HCs after each injection and discharging cycle, during miscible enhanced-oil-recovery (EOR) huff ’n’ puff experiments on Eagle Ford samples.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3