Identifying Formation Mineralogy Composition in Acid Fracturing From Distributed Temperature Measurements

Author:

Aljawad Murtada Saleh1

Affiliation:

1. King Fahd University of Petroleum and Minerals

Abstract

Summary The successful stimulation of carbonate formations by acid-fracturing operations depends on the ability to treat the entire pay zone. The acid dissolves carbonate rocks and creates conductive channels through which the reservoir's fluids flow. Heterogeneity in lithology causes acid to create a preferential path in the most-reactive zones. Temperature measurements by temperature logging or distributed temperature sensing (DTS) are commonly used to evaluate injection and production zones. The present research includes a modeling study from which the mineralogy in multilayer fractured formations can be identified by means of temperature measurements. Heat transfer is commonly coupled in acid-fracturing models to account for temperature effects on acid reactivity with carbonate minerals. Temperature profiles are usually evaluated during simulations of fracturing fluid injection, but seldom during fracture closure. Because most of the acid is spent during injection, many models assume that the remaining acid reacts proportionally along the fracture length. Because of this assumption, neither acid spending nor temperature is usually simulated during fracture closure. In this study, a fully integrated temperature model is developed in which both acid reaction and heat transfer are simulated while the fracture is closing. At each timestep, transient heat convection, conduction, and generation are calculated along the wellbore, reservoir, and fracture dimensions. Modeling temperature during this transient period provides a significant understanding of the near-wellbore fracture dissolution. During shut-in, cold fracturing fluids are heated mainly because of the heat flow from the formation to the fracture. Reactive reservoir sections that receive larger volumes of the cold treatment fluids usually require more time for the geothermal temperature to be restored. Because of this phenomenon, minerals distribution along the wellbore axial direction can be identified in acid fracturing. This information can be useful when designing acid-fracturing jobs in nearby wells or revisiting the same wellbore for further stimulation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3