Unconventional Resources Will Require Unconventional EOR

Author:

Jacobs Trent1

Affiliation:

1. JPT Senior Technology Writer

Abstract

Conference review - 2015 Unconventional Resources Technology Conference The Bakken Petroleum System, which includes the Bakken and Three Forks shales in North America, is estimated to hold as much as 900 billion bbl of original oil in place. However, the technically recoverable oil is a fraction of the total, estimated to be 20 billion bbl to 45 billion bbl, because most of the 8,000 producing wells have a recovery factor of about 3% to 10%. “And in fact, 10% is anomalously high,” said James Sorenson, a senior researcher at the Energy & Environmental Research Center (EERC). “So it is clear with the enormous size of the prize in the ground that even small improvements in recovery could yield significant amounts of oil.” Sorenson is leading a research project involving government agencies and several upstream companies in search of a way to squeeze more oil out of the Bakken for years to come by using CO2 for enhanced oil recovery (EOR). He presented the progress of the project at the recent Unconventional Resources Technology Conference. Sorenson said the key to understanding how well CO2 will work in tight formations is a deep understanding of how fluids move through tiny pores and microfractures. Microfractures account for much of the porosity and permeability in the Middle Bakken formation and will be important for EOR because they are also thought to contribute to long-term production. So far, the research team has completed a series of studies using a wide range of technologies including scanning electron microscopes and computed tomography to identify rock characteristics that would allow trapped oil to be produced. In experiments, the researchers have discovered that when small shale samples are placed into a high-pressure/ high-temperature chamber and bathed with CO2, the oil will swell and its viscosity lowers enough so that it moves through the rock. “It demonstrates that oil can be extracted and that CO2 can also permeate the rocks,” Sorenson said. This is different from CO2 flooding in conventional reservoirs in which the goal is to displace the oil and sweep it into the production zone. Some of the experiments were able to extract 80% to 100% of the oil from the shale samples in a 24-hour period. However, Sorenson said more experiments will be needed to get a better handle on the mechanisms involved in the process. The information obtained from the laboratory testing has been run through computer models to see how the CO2 will affect production on a larger scale. Though the models showed that production could be improved, in some cases doubled, they also showed there is a clear delay in comparison with what happens during a CO2 flood in a conventional formation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3