Affiliation:
1. Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences (Corresponding author; Equal contributor)
2. Rice University (Equal contributor)
3. Rice University
Abstract
Summary
Scale inhibitors are widely used for mineral scale control in various industries, including oil and gas productions, geothermal energy acquisitions, and heat exchanger scale control to mention a few. In most applications, these scale inhibitors are effective at substoichiometric concentrations (e.g., 1 mg/L or lower), and the optimization of these applications is based on the ability to accurately measure the effective inhibitor concentration at such low concentrations. For example, the continuous treatment injection rate, the squeeze treatment frequency, or the batch treatment schedule need to be optimized to ensure the minimum inhibitor concentration (MIC) is achieved during production. However, the non- or low-phosphorous polymeric scale inhibitor concentration determination is difficult using inductively coupled plasma (ICP)-optic emission spectroscopy/mass spectrometry or ion chromatography, especially at mg/L level concentrations due to their high detection limits. The recently developed hyamine method or high-pressure liquid chromatography (HPLC) method involves intensive labor and high costs. Furthermore, in the complex oilfield operational conditions, the presence of other chemicals (e.g., surfactants, biocides, and corrosion inhibitors), the potential degradation of scale inhibitors and the use of combination scale inhibitors require the measurement of effective scale inhibitor concentration, which cannot be accomplished by the traditional methods. In this study, a new kinetic assay method has been developed to determine the effective scale inhibitor concentration with limits of detection (LODs) less than or around 0.1 mg/L for most cases. This method uses a continuous stirring tank reactor (CSTR) apparatus and is developed based on the linear correlation between the effective inhibition concentration and the measured critical time when laser signal changes. The results show that the inhibitor concentrations of various non- or low-phosphorous polymeric scale inhibitors in synthetic field brine, laboratory solutions, and real oilfield brines can be accurately determined at mg/L level, or lower, with less than 10% error. The method is robust, accurate, and much less time- or labor-consuming than other existing methods especially for non- or low-phosphorous polymeric scale inhibitors.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献