Real Time Prediction of the Rheological Properties of Oil-Based Drilling Fluids Using Artificial Neural Networks

Author:

Al-Azani Khaled1,Elkatatny Salaheldin1,Abdulraheem Abdulaziz1,Mahmoud Mohamed1,Al-Shehri Dhafer1

Affiliation:

1. All King Fahd University of Petroleum & Minerals (KFUPM)

Abstract

Abstract Continuous monitoring of the rheological properties of the drilling mud is essential so that any drilling operation can be completed more effectively and efficiently with the least problems. Mud rheological properties play a vital role in the in the efficiency of the drilling fluid to lift the cuttings from the wellbore. The mud rheological properties include the plastic viscosity, apparent viscosity, and the yield point. However, these properties are not measured continuously during the drilling process and they are only measured once or twice a day while other mud properties, such as the mud weight, the Marsh funnel viscosity, and solid content, are measured regularly and continuously. Therefore, it is valuable to come up with a relation that relates the mud rheological properties to these parameters. Many researchers tried to introduce models that allow for the prediction of the apparent viscosity from the Marsh funnel viscosity. However, these models have the deficiency that the prediction is with high errors. For the first time, the solid percent was used to predict the rheological properties of the oil-based drilling fluid based on the artificial neural network using actual field measurements. The purpose of this study is to use the Artificial Neural Networks (ANN) Technique to develop a model that allows the prediction of the mud rheological properties such as the plastic viscosity, apparent viscosity, the rheometer readings at 600 and 300 rpm and the flow behavior index for oil-based mud from the mud weight, the Marsh funnel viscosity and solid content. The study is based on 400 data points collected from the field measurements of actual drilling fluid samples. The obtained results showed that the five developed models using ANN technique can be used to predict the rheological properties of oil- based drilling fluid with a high accuracy; the average absolute error was less than 5% and the correlation coefficient was higher than 90%. The developed technique is inexpensive with no additional required equipment. It will help the drilling engineers to calculate the equivalent circulation density, surge and swab pressures, and hole cleaning which are strong functions of the rheological parameters in a real time. The method and approach used in this paper to predict and determine the unknown drilling fluid properties and trend out of accurately defined parameters is futuristic and progressive. The method is one step forward toward automating the drilling fluid system which is another step forward toward fully automating the drilling process overall.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3