Affiliation:
1. Colorado School of Mines
2. Hess Corporation
Abstract
Abstract
Some shale gas and oil wells undergo month-long shut-in times after multi-stage hydraulic fracturing well stimulation. Field data indicate that in some wells, such shut-in episodes surprisingly increase the gas and oil flow rate. In this paper, we report a numerical simulation study that supports such observations and provides a potentially viable underlying imbibition and drainage mechanism. In the simulation, the shale reservoir is represented by a triple-porosity fracture-matrix model, where the fracture forms a continuum of interconnected network created during the well simulation while the organic and non-organic matrices are embedded in the fracture continuum. The effect of matrix wettability, capillary pressure, relative permeability, and osmotic pressure, that is, chemical potential characteristics are included in the model.
The simulation results indicate that the early lower flow rates are the result of obstructed fracture network due to high water saturation. This means that the injected fracturing fluid fills such fractures and blocks early gas or oil flow. Allowing time for the gravity drainage and imbibition of injected fluid in the fracture-matrix network is the key to improving the hydrocarbon flow rate during the shut-in period.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献