Effect of Silica Nanoparticles on the Rheological Properties and Filtration Performance of Surfactant-Based and Polymeric Fracturing Fluids and Their Blends

Author:

Fakoya M. F.1,Shah S. N.1

Affiliation:

1. University of Oklahoma

Abstract

Summary The investigation of nanotechnology applications in the oil and gas industry is increasing gradually; therefore, this technology needs more exploration to unveil promising applications. In this study, an experimental investigation of nanotechnology on the apparent viscosity, viscoelastic properties, and filtration performance of surfactant-based fluids (SBFs) or viscoelastic surfactants (VESs), polymeric fluids, and SBF/polymeric-fluid blends is presented. The concentration of SBF is 5 vol%, whereas that of polymeric fluids is 33 lbm/1,000 gal guar. Besides, both fluids contained 4 wt% potassium chloride (KCl). In addition, Blend-A and Blend-B were prepared by mixing SBF and polymeric fluids in the ratio of 75/25 and 25/75 vol%, respectively. Nanofluids were prepared by adding 20-nm silica nanoparticles, at concentrations of 0.058, 0.24, and 0.4 wt%, to the clean fluids. Apparent viscosity and viscoelastic data were gathered with a rheometer within a temperature range of 75 to 175°F, whereas filtration tests were conducted with a wall-mount filter press at ambient temperature and 100-psi differential pressure. The results indicate an enhancement in the apparent viscosity and viscoelastic properties of surfactant-based and polymeric nanofluids up to a nanoparticle concentration of 0.24 and 0.4 wt%, respectively. Blend-A nanofluids show improvement in apparent viscosity and viscoelastic properties at a nanoparticle concentration of 0.058%. Similarly, Blend-B displayed favorable results up to a nanoparticle concentration of 0.24 wt% at temperatures of 125 to 175°F. Promising filtration results were displayed with surfactant-based nanofluids and Blend-A nanofluids at all nanoparticle concentrations, but the performance at 0.24 and 0.4 wt%, respectively, is slightly better. Polymeric nanofluids and Blend-B nanofluids revealed very good filtration results at all nanoparticle concentrations, but the performance at 0.24 and 0.058 wt%, respectively, is slightly better with a percentage reduction in API filtrate volume of 70.2 and 69.8%, respectively. A trial run was made with a commercially available fluid-loss additive [polyanionic cellulose (PAC)] in polymeric fluids at the same nanoparticle concentrations; the result confirmed that nanosilica facilitates the achievement of a superior filtration property. Comparison of apparent viscosity, viscoelastic properties, filtration performance, and economic analysis revealed Blend-A nanofluid as the preferred choice. Further, Blend-A nanofluid (at 0.058 wt%) is selected as the best on the basis of filtration performance. The selected fluid was optimized at lower nanoparticle concentrations (0.02, 0.01, and 0.002 wt%). Interestingly, using Blend-A nanofluid at 0.002 wt%, compared with the initial recommendation of 0.058 wt%, which costs USD 171.7/bbl, reduces the cost of nanoparticles required for preparing 1 bbl of this fluid to USD 5.8. Therefore, from a filtration-performance standpoint, Blend-A nanofluid is recommended for use at a nanoparticle concentration of 0.002 wt%. The application of nanotechnology on the apparent viscosity, viscoelastic behavior, and filtration properties of SBF, polymeric fluids, and SBF/polymeric-fluid blends can deliver some benefits, if nanoparticle concentrations are selected carefully. These nanofluids will be applicable for oilfield operations such as hydraulic fracturing.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3