Simulation and Optimization of CO2 Huff-and-Puff Processes in Tight Oil Reservoirs

Author:

Kong Bing1,Wang Shuhua1,Chen Shengnan1

Affiliation:

1. University of Calgary

Abstract

Abstract As one of the unconventional resources, tight oil has become one of the most important contributor of oil reserves and production growth. The successful commercial production of tight oil is mainly reliant on the advancement in horizontal drilling and multistage hydraulic fracturing technique. Development of tight oil reservoirs remains in an early stage. Primary oil recovery factor in these reservoirs is very low, leaving substantial volume of oil trapped underground due to the low porosity, low permeability characteristic of tight oil reservoirs. Thus, investigation of enhanced oil recovery methods is more than imperative in tight oil reservoirs. CO2 Huff-and-Puff technology has been effectively applied in conventional reservoirs and can be tailored to adapt for the characteristics of tight oil reservoirs. In this study, the performance of water flooding in tight oil reservoir is studied and compared with that of the CO2 Huff-and-Puff process. Sensitivity analysis demonstrates that the performance of CO2 Huff-and-Puff is more sensitive to the length of gas injection and production step in each cycle, compared to the soaking time. The CO2 Huff-and-Puff process is optimized and an adaptive CO2 Huff-and-Puff process is conducted for tight oil reservoirs after primary production. Simulation results show that the adaptive cycle length CO2 Huff-and-Puff process can improve the incremental oil recovery by 11.1% over a fixed cycle length process. Finally, the inter-well interference during CO2 Huff-and-Puff is studied, and it is found that a multi-well asynchronous CO2 Huff-and-Puff pattern can improve the incremental oil recovery by 31.6% over that of a synchronous pattern.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3