Abstract
Summary
In this paper, we present an experimental study that explores the potential links between the imbibition capillary pressure Pci and the pore systems and/or mineralogy for carbonate reservoirs undergoing waterflood. A systematic workflow has been formulated to ensure the data quality of Pci, minimize uncertainty in deriving Pci from centrifuge tests, and analyze the data considering the pore-size distribution from mercury injection capillary pressure (MICP) and mineralogy from Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN). The workflow starts with assessing the centrifuge production data for gravity-capillary equilibrium at each speed. Then, the quality-checked data are used to generate six different Pci curves using analytical and numerical models. The resulting curves provide a measure of the variability in solutions for various rock types and assist in the selection of the most-representative Pci curve. Finally, the representative Pci curves of all rock samples are analyzed together with the MICP and QEMSCAN data to examine the change in Pci curves as a result of changes in the number and character of rock types, pore systems, dominant pore-throat radii, and mineralogy.
Findings from this study shed light on the impact of mineralogy and pore systems on Pci. From the mineralogy perspective, the presence of dolomite, microporous calcite, or rutile and anatase (TiO2) within the rock composition is found to affect the Pci of the carbonate samples used in this study. The rock samples with these minerals should be separated from other bimodal samples before attempting to obtain a correlation between Pci and pore systems. The data analysis further reveals that some bimodal samples of medium permeability yield a better waterflood imbibition efficiency than those of the high-permeability samples. This observation is attributed to a better communication between the micropore and macropore systems, and a closer proximity of the peak radii of the micro- and macropore systems of the medium-permeability samples.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献