Carbon Dioxide Flooding Evaluation of High Pour-Point, Paraffinic Red Wash Reservoir Oil

Author:

Frimodig James P.1,Reese Norman A.2,Williams Craig A.3

Affiliation:

1. Chevron Canada Resources Ltd.

2. Chevron Oil Field Research Co.

3. Chevron U.S.A. Inc. Central Region

Abstract

Abstract Engineering methods are being developed to evaluate reservoir fluid systems for Suitability to CO2 flooding. This paper presents our evaluation procedure as applied to laboratory data for a high-pour-point [95 degrees F (35 degrees C)] oil from the Red Wash field in Utah. The data were obtained from phase behavior and slim tube experiments. The results of this work indicate that high pressures are required for a miscible displacement of the highly paraffinic. high-pour-point Red Wash oil. The minimum miscibility pressure (MMP) was found to be 4,650 psia (32 060 kPa), increasing only 5% to 4,900 psia (33 784 kPa) when the injected CO2 contains a 10 mol% nitrogen contaminant. These pressures are not currently economically obtainable in the Red Wash field. lntroduction The Red Wash field is located in Utah in the northeastern Uinta basin. With a comparatively low ultimate recovery predicted from primary depletion and waterflooding operations, the field is considered an attractive condidate for tertiary recovery methods. The work reported in this paper presents laboratory experiments and calculation techniques used in evaluating reservoir fluids for CO2 flooding. The laboratory work includes constant composition experiments, vapor/liquid equilibrium experiments, liquid-phase viscosity experiments, and slimtube multiple-contact miscibility experiments. Calculation techniques utilized a two-constant equation of state (EOS) to predict phase behavior and fluid properties. One CO2 source available in the area contains approximately 10 mol% nitrogen. To evaluate the effect of nitrogen contamination, experiments were performed with two different gases, one with and one without the nitrogen contaminant. Red Wash Oil/CO, Gas Physical Property Measurements Physical property data for the Red Wash oil/CO2 gas system were obtained from constant composition expansion (CCE), vapor/liquid equilibration (VLE), and liquid-phase viscosity experiments. CCE experiments were conducted to determine the pressure/composition behavior (bubble-point/dew-point envelope) of Red Wash oil and injection gases. VLE experiments measured vapor/liquid equilibrium constants (K values). Liquid-phase viscosities determine to what extent injection gases dissolved in the liquid phase affect the flow behavior of the reservoir oil. All experiments used Red Wash reservoir oil and two different injection gases. The first CO2 gas (Gas 1 ) was approximately 5 mol% methane and 95 mol % CO 2. The second CO2 gas (Gas 2) contained about 10 mol% nitrogen, 5 mol% methane, and 85 mol %, CO2. The exact compositions of Gases 1 and 2 and Red Wash reservoir oil are shown in Table 1. CCE Experiments A high-pressure visual PVT cell was used in the CCE experiments. All experiments were conducted at the reported reservoir temperature of 130 degrees F (54.4 degrees C). During each CCE the visual cell was loaded with measured volumes of Red Wash oil and injection gas. SPEJ P. 587^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3