Production Optimization of the CO2 Huff-N-Puff Process in an Unconventional Reservoir Using a Machine Learning Based Proxy

Author:

Almasov Azad1,Onur Mustafa1,Reynolds Albert C.1

Affiliation:

1. U. of Tulsa

Abstract

Abstract The main objective of this work is to investigate efficient estimation of the optimal design variables that maximize net present value (NPV) for the life-cycle production optimization during a single-well CO2 huff-n-puff (HnP) process in unconventional oil reservoirs. During optimization, the NPV is calculated by a machine learning (ML) proxy model trained to accurately approximate the NPV that would be calculated from a reservoir simulator run. The ML proxy model can be obtained with either least-squares support vector regression (LS-SVR) or Gaussian process regression (GPR). Given forward simulation results with a commercial compositional simulator that simulates miscible CO2 HnP process in a simple hydraulically fractured unconventional reservoir model with a set of design variables, a proxy is built based on the ML method chosen. Then, the optimal design variables are found by maximizing the NPV based on using the proxy as a forward model to calculate NPV in an iterative optimization and training process. The sequential quadratic programming (SQP) method is used to optimize design variables. Design variables considered in this process are CO2 injection rate, production BHP, duration of injection time period, and duration of production time period for each cycle. We apply proxy-based optimization methods to and compare their performance on several synthetic single-well hydraulically fractured horizontal well models based on Bakken oil-shale fluid composition. Our results show that the LS-SVR and GPR based proxy models prove to be accurate and useful in approximating NPV in optimization of the CO2 HnP process. The results also indicate that both the GPR and LS-SVR methods exhibit very similar convergence rates and require similar computational time for optimization. Both ML based methods prove to be quite efficient in production optimization, saving significant computational times (at least 5 times more efficient) than using a stochastic gradient computed from a high fidelity compositional simulator directly in a gradient ascent algorithm. The novelty in this work is the use of optimization techniques to find optimum design variables, and to apply optimization process fast and efficient for the complex CO2 HnP EOR process which requires compositional flow simulation in hydraulically fractured unconventional oil reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3