Affiliation:
1. Colorado School of Mines
Abstract
Summary
In this study, the available methods and software to predict the well productivity and total skin factor in fully perforated vertical wells have been reviewed. The methods have been compared against the experimental data obtained on an electrolytic apparatus, and their accuracy has been investigated. It has been observed that the 3D semianalytical model, SPAN 6.0 software, and the simple hybrid model described in this paper replicate the experimental results very well. On the other hand, the results estimated from the McLeod method and the Karakas-Tariq method substantially deviate from the experimental data; hence, these models/methods should be used with caution.
The literature hosts many equations to predict the total skin factor in partially perforated vertical wells. Some of the available models have been tested against the results from the 3D semianalytical model. It has been shown that total skin-factor equations based on the summation of individual components do not work.
The 3D semianalytical model has been modified to build an approximate model for fully and partially perforated inclined wells in isotropic formations. Additionally, a simple hybrid model to compute total skin factor in perforated inclined wells has been presented. The hybrid model for perforated inclined wells agrees well with the approximate 3D model. Some of the available models to calculate total skin factor in perforated inclined wells have been compared to the approximate 3D model, and their accuracy has been discussed.
Finally, a simple model to predict total skin factors in perforated horizontal wells has been developed. The application using the simple model has demonstrated that a combination of long wellbore length and perforations bypassing the damaged zone could overcome the destructive effect of severe formation damage around the wellbore.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献