Maximizing Value from Geosteering Efficiency by Integrating Real-Time Petrophysical Analysis

Author:

Kundu Ashish1,Raza Taufique Ahmad1,Deng Lichuan2,Soliman Ahmed Mohamed2,Elabsy Eslam2,Zemiti Sarah2,Alhammadi Alyazia1

Affiliation:

1. ADNOC Onshore

2. ADNOC Drilling

Abstract

Abstract Conventional geo-steering approach use raw logging measurements to define wellbore positioning within the reservoir while drilling. The geo-steering specialist usually compares real-time logs to modelled logs (GR/Density/Neutron/Resistivity) and the geological model is then adjusted to make real-time decisions to deliver the well objectives. This conventional method is applicable to most reservoir conditions. However, it may be insufficient or inappropriate in heterogeneous reservoirs or wells with complex geological settings, potentially resulting in wells being sub-optimally placed and reducing the value of reservoir sections in terms of productivity. This paper aims to showcase a Petrophysics-based Geo-steering approach to maximize the value of reservoir sections. Geo-steering aims to place the well trajectory in the lithology with optimum storage capacity, flow capacity and hydrocarbon saturation. The method of log-to-log comparison is popular for its simplicity and speed of use in real-time but is not enough for certain scenarios. For example, the real-time log response can be very different from modelled log response in the presence of gas or very light oil, irrespective of petrophysical properties (porosity/permeability) being similar. Moreover, real-time Sw estimation would be required in addition to porosity to minimize the risk of drilling a producer into water bearing intervals. In fact, the comparison between petrophysical parameters is more appropriate to heterogeneous reservoirs or wells with complicated geology. This approach requires good co-ordination between geologist, petrophysicist and geo-steering specialist. Prior to drilling, the petrophysical model from offset wells should be defined and used to derive porosity, permeability and saturation. While drilling, the petrophysical properties are then interpreted in real-time and based on the comparison between modelled and real-time petrophysical properties, decisions are to be made with respect to the well objectives. An example with strong gas effect in a carbonate reservoir from Abu Dhabi is presented to demonstrate this novel approach. Real-time density/neutron does not have good correlation with modelled density /neutron due to gas effect. Such poor correlation can be attributed to proximity to a Gas Oil Contact (GOC) and dynamic invasion, complicating the real-time geo-steering. However, real-time total porosity from log analysis correlates very well with modelled total porosity, providing confidence in wellbore positioning and allowing the geologist and the geo-steering specialist to make the correct real-time decision to place the well in the optimum stratigraphic position in order to meet the well objectives. Only conventional logs are utilized in this case, but if real-time NMR and resistivity image interpretation are available, it will provide additional information in term of permeability, secondary porosity and irreducible water saturation to aid efficient geo-steering.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3