Multistage Transverse Fracturing of Horizontal Well: A New Integrated Model to Develop Tight Gas Sands

Author:

Yu Haiqing1,Rahman M. M.1

Affiliation:

1. The Petroleum Institute, Abu Dhabi, UAE

Abstract

Abstract As the demand for gas increases worldwide, tight and deep unconventional gas sands are becoming the target for development. Continuous progress in hydraulic fracturing technology has resulted in multistage transverse fracturing of horizontal well in tight gas sands. However, for such reservoirs the conventional approach of simply fracturing the formation to stimulate the horizontal well is inadequate. This is because most currently available commercial software lack proper optimization tools in them and they do not take into consideration several key parameters and realistic constraints. Even the systematic design methods for fracture treatment parameters with constraints are not well presented in the literature. Although larger the number of transverse fractures higher the productivity, there are optimal number of fractures and optimum treatment parameters when real field constraints and economic aspects are considered. A new integrated but constrained model to optimize multistage transverse fractures has been developed to maximize gas production and net present value with minimum treatment cost. Model couples both the industry experience and unified fracturing design parameters based on hydraulic fracture mechanics. Unified fracturing design defines the optimal compromise between the fracture width and fracture length for a given mass of proppant. Model integrates unified fracture geometry, reservoir in-situ parameters, treatment parameters controllable at every stage, realistic design constraints, and production and economic modules. The integrated model has been successfully applied to a hypothetical deeper and tight gas sands to demonstrate its merits. A simple and accurate analytical approach has been used for evaluating and optimizing the productivity. This model could also be used to study the potential of the deep UAE offshore tight gas sands, which is yet to be developed.

Publisher

SPE

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3