Data Analytics Application for Conventional Plunger Lift Modeling and Optimization

Author:

Akhiiartdinov Anvar1,Pereyra Eduardo1,Sarica Cem1,Severino Jose2

Affiliation:

1. The University of Tulsa

2. Cimarex Energy Co.

Abstract

Abstract Conventional plunger lifting is a transient process that consists of cyclic openings and closings of a gas well. Because of this complex behavior, using traditional physics-based models to simulate the coupled behavior of reservoir and wellbore performance is computationally rigorous and challenging. Therefore, this study proposes a machine learning-based approach to simulate gas production from plunger-lifted wells and facilitate the optimization of this process. The model is developed and validated using field data. Typically, high-frequency (1 minute) measurements of plunger arrival time as well as casing and tubing pressure, are available in a plunger-lifted well. In addition, some wells are equipped with individual high-frequency measurements of gas flow rate. However, in most cases, there is a single gas flow rate meter available for the entire well pad. Therefore, a machine learning methodology is formulated with input variables that include plunger arrival time, tubing and casing pressure, and instantaneous gas flow rate as an output variable. Due to practical considerations regarding plunger lift operation, the approach assumes that a training set (one week) is smaller than a testing set (one month). A feed-forward neural network model is trained and is found to provide results with acceptable accuracy. The architecture of the network is obtained by performing a grid search and by minimizing a mean squared error. In the next step, obtained gas production is treated as a function of "on" (opening) and "off" (closing) time periods. The objective of the second model is to reproduce the data and to construct a response surface by varying "on" and "off" time periods. Based on the results from several plunger-lifted gas wells, both models have a unified architecture that requires tuning weight coefficients with a training/development dataset. The neural network model to simulate the gas flow rate performs well; it is evaluated with common statistical parameters. The model requires gas flow rate measurements from routine production tests to build the training set. Having a gas flow rate model provides the opportunity to train another machine learning model as a function of "on" and "off" time periods. The new model is validated using the data during the final week of production history. The relative error between the data and the model is approximately 10%, which ensures the reliability of the model. A surface response is constructed over a range of "on" and "off" time periods to find an optimum point maximizing total gas production during the validation period (final week). Optimization results demonstrate that "off" time (fall + buildup) should be minimized, and "on" time (upstroke + after-flow) should be at a certain threshold. Current industry practice to optimize plunger lift cycles is based on factors such as average plunger rise velocity, and load factor. However, these methods do not optimize the actual variable of interest that is gas production. The unique contribution of the proposed approach is that it provides a robust tool to monitor the gas flow rate from an individual plunger-lifted well (flow rate allocation) and to optimize plunger lift cycles based on cumulative gas production. The model runs fast and can complement existing alarm systems on SCADA to adjust controller set-points in real-time.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3