Affiliation:
1. Chevron North America Exploration and Production Company
2. Chevron Europe, Eurasia, and Middle East Exploration and Production Company
3. Chevron Energy Technology Company
Abstract
Summary
In this paper, we provide an update on recent advances for and summarize global experiences with dendritic-acidizing (DA) methods, or acid tunneling. We include both coiled-tubing (CT) deployed methods and non-CT methods, and discuss process limitations, candidate-selection criteria, job-design factors, operational learnings, risks, and surveillance requirements and opportunities. A comprehensive review of published information is provided for three different tunneling methods along with relevant information for several other tunneling methods. This literature information is supplemented by depth, temperature, and pressure records for the three processes, which are discussed in detail. Execution factors such as logistics required, length of time required, and volumes of acid and other fluids used are also compared for the three methods.
Previous papers have focused on only one of the methods, whereas we will discuss acid-job optimization, process risks, and surveillance requirements for multiple acid-tunneling methods in substantially greater depth than have past authors. The three methods detailed in this paper are all viable but may have different niches. Differences in the job counts for the different methods are easily explained by differences in process vintages, execution speeds, and depth limitations. Previous optimization efforts were focused on tunnel creation but not acid-job effectiveness in terms of the wormholes generated adjacent to the tunnels; however, some progress is now being made in that regard. There are differences in the processes regarding pushing or pulling the jetting nozzles into the tunnels, and differences in resulting tunnel trajectories. Prejob caliper data are more critical for one of the processes than for the others, and there are significant differences in ability to measure or control tunnel direction. The tunneling tools have different sizes, but when tool-size alternatives are available, the larger tool sizes offer no clear advantages to the operator. Useful risk-mitigation measures are also discussed, and a comprehensive bibliography is included to facilitate further examination of the technology alternatives by other petroleum-industry professionals.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献