Simulation of Polymer Injection Under Fracturing Conditions—An Injectivity Pilot in the Matzen Field, Austria

Author:

Zechner Markus1,Clemens Torsten1,Suri Ajay2,Sharma Mukul M.3

Affiliation:

1. OMV

2. University of Petroleum & Energy Studies

3. University of Texas at Austin

Abstract

Summary Polymer flooding leads to enhanced oil recovery by accelerating oil production and improving sweep efficiency. However, because of the higher viscosity, the injectivity of polymer solutions is of some concern and is important to understand to predict incremental oil recoveries. Achieving high polymer-injection rates is required to increase oil-production rates. In the field test performed in the Matzen field (Austria), polyacrylamide polymers were injected for the past 2 years. Coreflood experiments with these polymers showed a significant increase in apparent viscosity because of the viscoelastic properties of the polymer solutions. Also, severe degradation of the polymer solution at high flow velocities was detected. In addition to coreflood experiments, flow experiments through fractures were performed. In these experiments, shear thinning and limited degradation of the polymer solution were observed and quantified. Detailed polymer-injection simulations were conducted that included complex polymer rheology in the fractures and the matrix. The reservoir stress changes and their effects on the fractures were also taken into account as a result of cold-polymer injection. The results of the simulations matched the field data both for waterfloods and polymer-test floods. The simulations revealed two distinct phases during the injection of the polyacrylamide-polymer solution: Injection under matrix conditions in an early phase resulting in severe degradation of the polymers Injection under fracturing conditions after the formation parting pressure is reached, leading to limited degradation of the polymers The calibrated model was used to investigate the impact of polymer rheology and particle plugging on injectivity and fracture growth. The results of the field test and the simulations indicate that screening of fields for polyacrylamide-polymer projects needs to include geomechanical properties of the reservoir sand and cap/base rock in addition to the conventional parameters used in screening such as oil viscosity, water salinity, reservoir temperature, and reservoir permeability.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3