Heavy-Oil-Recovery Enhancement With Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent

Author:

Shuwa S.M.. M.1,Jibril B.Y.. Y.1,Al-Wahaibi Y.M.. M.1,Al-Hajri R.S.. S.1

Affiliation:

1. Sultan Qaboos University

Abstract

Summary Because of increasing energy demand, unconventional resources such as heavy oil are being explored and recovered. Enhanced-oil-recovery (EOR) methods such as surfactants and polymer flooding must be optimized and new chemicals must be designed to produce more oil. This paper introduces a new deep eutectic solvent (DES) that is based on choline chloride/ethylene glycol for EOR. As preliminary investigations revealed, different concentrations of DES solutions in brine (0 to 100 vol%) were characterized by measuring density, viscosity, conductivity, surface tension, and refractive index at different temperatures (25 to 55°C). Then, the effects of the DES/brine solutions on emulsification with oil phase, wettability alteration, oil/solvent interfacial tension (IFT), formation damage, and tertiary heavy-oil recovery were studied. Potential of the DES solution on enhancing heavy-oil recovery was explored by use of coreflood experiments. This was performed at reservoir condition (pressure = 1,200 psi, temperature = 45 to 80°C) with Berea sandstone core samples and fluids from the field of interest (formation brine and crude oil). An increase in IFT rather than a decrease was observed between the DES/brine solution and the oil. The spontaneous-water-imbibition tests suggested that a decrease in oil-wetness led to an increase in oil production. Approximately 52% of residual oil after waterflooding was recovered with the DES from the coreflooding. The results show an increase in oil recovery with reservoir temperature (6, 13, and 16% on the basis of initial oil in place at 45, 60 and 80°C, respectively). The interaction of the DES with the core materials did not lead to formation damage, as demonstrated by the permeability measurements of the DES/brine solution before and after injection. Viscous forces and wettability alteration were found to be the dominant mechanisms for the tertiary oil-recovery enhancement.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3