ROP Optimization Using Artificial Intelligence Techniques with Statistical Regression Coupling

Author:

Mantha B..1,Samuel R..2

Affiliation:

1. University of Houston

2. Halliburton

Abstract

Abstract Predictive data-driven analytics has driven massive interest, primarily because of its successful implementation in several industries. Data-driven modeling and its application to predict downhole environment will prove to be the future of drilling operations, as they hold the potential to optimize highly complex drilling operations. In general, rate of penetration (ROP) optimization involves adjustment of the weight on bit (WOB) and rotary speed (RPM) for efficient drilling. ROP follows a complex relationship with several other parameters such as formation properties, mud properties, mud hydraulics, borehole deviation as well as the size/type of bit. Traditional regression analysis models have limitations and have limited accuracy while attempting to describe the dependence of one observed quantity on another observed quantity. On the other hand, the artificial intelligence methods face drawbacks trying to understand the physics behind the operations. To ensure the physical and technical feasibility of the prediction, coupling conditions between the two have been developed for the ROP optimization. In this study, a new model based on statistical regression and artificial neural networks (ANNs) was designed to predict ROP using field data gathered from the North Sea Horizontal Wells. Exploratory analysis was performed to find correlations between variables, followed by measurement of predictor importance to infer relative contributions and weights of inputs. Cross-validation was employed to prevent overtraining of models. Several models such as Step-Wise regression, neural networks (NN, KNN), support vector regression (SVR), classification regression trees (CART), were applied for prediction. Ensemble methods such as Random Forests (RF) and Boosting helped increase accuracy and reduce errors. The algorithm designed was further tested on other wells and was shown to predict with significant accuracy. This proves that several parameters need to be comprehensively considered while optimizing the ROP. Since the algorithm presented here doesn't depend on a single model but rather several predictor models, it can be effectively employed independent of location or formation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3