Role of Intermolecular Forces on Surfactant-Steam Performance into Heavy Oil Reservoirs

Author:

Seng Lee Yeh1,Hascakir Berna2

Affiliation:

1. University Technology PETRONAS and Texas A&M University

2. Texas A&M University (Corresponding author; email: hascakir@tamu.edu)

Abstract

Summary This study investigates the role of polar fractions of heavy oil in the surfactant-steamflooding process. Performance analyses of this process were done by examination of the dipole-dipole and ion-ion interactions between the polar head group of surfactants and the charged polar fraction of crude oil, namely, asphaltenes. Surfactants are designed to reduce the interfacial tension (IFT) between two immiscible fluids (such as oil and water) and effectively used for oil recovery. They reduce the IFT by aligning themselves at the interface of these two immiscible fluids; this way, their polar head group can stay in water and nonpolar tail can stay in the oil phase. However, in heavy oil, the crude oil itself has a high number of polar components (mainly asphaltenes). Moreover, the polar head group in surfactants is charged, and the asphaltene fraction of crude oils carries reservoir rock components with charges. The impact of these intermolecular forces on the surfactant-steam process performance was investigated with 10 coreflood experiments on an extraheavy crude oil. Nine surfactants (three anionic, three cationic, and three nonionic surfactants) were tested. Results of each coreflood test were analyzed through cumulative oil recovery and residual oil content. The performance differences were evaluated by polarity determination through dielectric constant measurements and by ionic charges through zeta potential measurements on asphaltene fractions of produced oil and residual oil samples. The differences in each group of surfactants tested in this study are the tail length. Results indicate that a longer hydrocarbon tail yielded higher cumulative oil recovery. Based on the charge groups present in the polar head of anionic surfactants resulted in higher oil recovery. Further examinations on asphaltenes from produced and residual oils show that the dielectric constants of asphaltenes originated from the produced oil, giving higher polarity for surfactant-steam experiments conducted with longer tail length, which provide information on the polarity of asphaltenes. The ion-ion interaction between produced oil asphaltenes and surfactant head groups were determined through zeta potential measurements. For the most successful surfactant-steam processes, these results showed that the changes on asphaltene surface charges were becoming lower with the increase in oil recovery, which indicates that once asphaltenes are interacting more with the polar head of surfactants, then the recovery rate increases. Our study shows that the surfactant-steamflooding performance in heavy oil reservoirs is controlled by the interaction between asphaltenes and the polar head group of surfactants. Accordingly, the main mechanism that controls the effectiveness of the process is the ion-ion interaction between the charges in asphaltene surfaces and the polar head group of crude oils. Because crude oils carry mostly negatively charged reservoir rock particles, our study suggests the use of anionic surfactants for the extraction of heavy oils.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3