Application of Nanoparticles in Improving Rheological Properties of Water Based Drilling Fluids

Author:

Al-saba M. T.1,Al Fadhli A..2,Marafi A..3,Hussain A..3,Bander F..4,Al Dushaishi M. F.4

Affiliation:

1. Australian College Of Kuwait

2. KNPC

3. KPC

4. Texas A&M International University

Abstract

Abstract Nanoparticles (NPs) have been recently used for different application in the oil and gas industry. Nanoparticles have proven their effectiveness for different applications including; drilling fluids, wellbore strengthening, and enhanced oil recovery (EOR). In this paper, different types of nanoparticles including Aluminum Oxide, Copper Oxide, and Magnesium Oxide were evaluated at two different concentrations. The main objective of this research is to investigate the effect of adding nanoparticles on the rheological properties of water-based drilling fluid. A simple 7% bentonite water-based mud was used in this study as a reference point. The rheological properties including plastic viscosity, yield point, and gel strength were evaluated at both; standard test temperature of 120°F and room temperature to understand the effect of nanoparticles on the rheological properties. In addition, the filtration characteristics were investigated using both; the standard API filter press at low-pressure low-temperature (LPLT) as well as the high-pressure-high- temperature (HPHT) filter press at 500 psi and 250°F. The results showed that plastic viscosity was reduced by 50% when NPs were added compared to the reference point. The yield point was improved by 84%, 121%, and 231% for 0.5%Vol Copper Oxide, Aluminum Oxide, and Magnesium Oxide, respectively. In addition, the 10 seconds gel strength was increased up to 95%. A reduction in the fluid loss up to 30% was observed at LPLT conditions. However, the filtration characteristics were negatively affected at HPHT. Based on the results, there is a good potential for using the above-mentioned nanoparticles to improve the rheological properties, especially the low-end rheology while maintaining low plastic viscosities, which in turns results in a better hole cleaning and more control over the equivalent circulation density.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3