Fast, Approximate Solutions for 1D Multicomponent Gas-Injection Problems

Author:

Jessen Kristian1,Wang Yun2,Ermakov Pavel3,Zhu Jichun3,Orr Franklin M.3

Affiliation:

1. IVC-SEP, Technical U. of Denmark

2. BP America, Inc.

3. Stanford U.

Abstract

Summary This paper presents a new approach for constructing approximate analytical solutions for 1D, multicomponent gas displacement problems. The solution to mass conservation equations governing 1D dispersion-free flow in which components partition between two equilibrium phases is controlled by the geometry of key tie lines. It has previously been proven that for systems with an arbitrary number of components, the key tie lines can be approximated quite accurately by a sequence of intersecting tie lines. As a result, analytical solutions can be constructed efficiently for problems with constant initial and injection compositions (Riemann problems). For fully self-sharpening systems, in which all key tie lines are connected by shocks, the analytical solutions obtained are rigorously accurate, while for systems in which some key tie lines are connected by spreading waves, the analytical solutions are approximations, but accurate ones. Detailed comparison between analytical solutions with both coarse- and fine-grid compositional simulations indicates that even for systems with nontie-line rarefactions, approximate analytical solutions predict composition profiles far more accurately than coarse-grid numerical simulations. Because of the generality of the new approach, approximate analytical solutions can be obtained for any system having a phase behavior that can be modeled by an equation of state. The construction of approximate analytical solutions is shown to be orders of magnitude faster than the comparable finite difference compositional simulation. Therefore, the new approach is valuable in situations requiring fast compositional solutions to Riemann problems are required.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3