Gas/Water Flow in Porous Media in the Presence of Adsorbed Polymer: Experimental Study on Non-Darcy Effects

Author:

Blanchard V.1,Lasseux D.1,Bertin H.1,Pichery T.2,Chauveteau G.3,Tabary R.3,Zaitoun A.3

Affiliation:

1. University of Bordeaux

2. Gaz de France

3. Institute Français du Pétrol IFP

Abstract

Summary The objective of this paper is to report some experimental investigations on the effect of polymer adsorption on gas/water flow in non-Darcy regimes in homogeneous porous media, in contrast to previously available analyses focused mainly on the Darcy regime. Our investigation concentrates on gas flow either at low mean pressure, when Klinkenberg effects (or gas slippage) must be considered, or at high flow rates, when inertial effects are significant. The experimental study reported here consists of water and nitrogen injections into various silicon carbide model granular packs having different permeabilities. Experiments are carried out at different water saturations before and after polymer adsorption over flow regimes ranging from slip flow to inertial flow. In good agreement with previous works, in the Darcy regime, we observe an increase in irreducible water saturation and a strong reduction in the relative permeability to water, while the relative permeability to gas is slightly affected. At low mean pressure in the gas phase, the magnitude of the Klinkenberg effect is found to increase with water saturation in the absence of polymer, whereas for the same water saturation, the presence of an adsorbed polymer layer reduces this effect. In the inertial regime, a reduction of inertial effects is observed when gas is injected after polymer adsorption, taking into account water-saturation and permeability modifications. Experimental data are discussed according to hypotheses put forth to explain these effects. Consequences for practical use are also put under prospect.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3