Large Scale Laboratory Investigation of the Effects of Proppant and Fracturing Fluid Properties on Transport

Author:

Brannon Harold Dean1,Wood William Dale1,Wheeler Richard S.1

Affiliation:

1. BJ Services Co. USA

Abstract

Abstract The primary function of fracturing fluids is to provide the means and media for the transport and placement of a conductive proppant pack in the created fracture such that resident hydrocarbons may be more easily produced. In recent years significant effort and expense has been invested to develop an ideal fracturing fluid system. Such efforts have been often been akin to the proverbial dog chasing his tail, rather than on the addressing the engineering objective to place a conductive propped fracture. Development focus has been primarily on optimization of fluid rheological stability to get the treatment pumped and secondarily to mitigating any damage caused by new fluid system. Post-frac production analysis frequently demonstrates less than anticipated fracture area, suggesting excessive proppant-pack damage or that the proppant was not placed in designated areal location due to inadequate proppant transport. Recent testing was conducted in a large-scale slot apparatus at the Well Construction Technology Center in Oklahoma to evaluate the relative effects of proppant slurry component characteristics and the proppant transport capability. The effects of various fluid specific gravities, fluid viscosities, proppant specific gravities, proppant sizes, slurry flow rates, and slot widths were investigated. Testing included fluids from slickwater to gelled, weighted brines, proppants from 40/70 Ottawa sand to 14/30 ultra-lightweight proppants, pump rates from 0.1 to 1.0 bbl/ft/min, and slot widths from 0.25 to 0.5″. Evaluation of the proppant transport testing data and the comparative abilities of current fracturing slurry system technologies to achieve placement of a productive propped fracture will be discussed. Introduction and Background Hydraulic fracturing may be characterized as a complex process involving pumping highly pressurized fluid into a well to create fractures in a subterranean formation[1–3]. The resultant fractures provide flow pathways radiating laterally away from the wellbore. Proppant is placed in the created fractures to ensure that they remain open once the treating pressure is relieved, thus providing the desired highly conductive pathways to increase the productivity of an oil or gas well completion. Optimization of conductive fracture area is among the principal tenets of fracturing design engineering. The conductive fracture area is defined by the propped fracture height and the effective fracture length. The productive intervals are typically bounded by relatively non-productive rock and thus, the potential for maximizing the conductive area via fracture height is limited to placement of proppant across the height of the productive interval. Thus, the key design parameter over which fracturing treatment design engineers may have influence is the effective fracture length. Fracturing Fluids. The industry has focused great effort on the development of products and application techniques to facilitate proppant transport in efforts to maximize effective fracture length[2]. Highly viscous, crosslinked polymer-based fluids and/or relatively high fracture flow velocity have historically been employed to properly place the proppant throughout the fracture area. In the late 1980's it was recognized that the residues of commonly used crosslinked guar-based fracturing fluids often cause greater than 80% damage to proppant-pack conductivity, leading to the rapid evolution of improved breaker systems to mitigate the damage. The past decade has seen much advancement in these areas, including the introduction of crosslinked fluids having reduced polymer concentrations and viscoelastic surfactant-gelled fluid systems.

Publisher

SPE

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3