Low-Salinity Surfactant Flooding—A Multimechanistic Enhanced-Oil-Recovery Method

Author:

Tavassoli Shayan1,Korrani Aboulghasem Kazemi1,Pope Gary A.1,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

Abstract

Summary We have applied UTCHEM-IPhreeqc to investigate low-salinity (LS) waterflooding and LS surfactant (LSS) flooding. Numerical-simulation results were compared with laboratory experiments reported by Alagic and Skauge (2010). UTCHEM-IPhreeqc combines the UTCHEM numerical chemical-flooding simulator with IPhreeqc, the United States Geological Survey geochemical model. The IPhreeqc model was coupled to UTCHEM to model LS waterflooding as a function of geochemical reactions. The surfactant coreflood experiments were performed in vertical cores without using polymer or other mobility-control agents. These experiments were performed at a velocity greater than the critical velocity for a gravity-stable flood. After history matching the experiments, additional numerical simulations of surfactant floods at the critical velocity were run to estimate the performance under stable conditions. We also simulated a surfactant flood at higher salinity with lower interfacial tension (IFT) and compared the results with the LSS flood. These results provide new insights into LS waterflooding and surfactant flooding. Addition of surfactants prevents the retrapping of oil that was initially mobilized using LS-brine injection. The results show that the proper selection of surfactant and the design of the surfactant flood might surpass the potential benefits of LS waterflooding in terms of both higher oil recovery and lower cost. Specially, a more-effective method is expected in a stable design with no preflood.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3