Mechanics of Foamy Oil during Methane-Based Cyclic Solvent Injection Process for Enhanced Heavy Oil Recovery: A Comprehensive Review

Author:

Basilio Enoc1,Babadagli Tayfun1

Affiliation:

1. University of Alberta

Abstract

Summary Foamy oil flow is a commonly encountered drive mechanism in the primary production (depletion of naturally methane-saturated heavy oil) and secondary stage (cyclic gas—mostly methane—injection after primary production). In the former, among other important parameters, pressure depletion rate has been reported to be the most crucial parameter to control the process. In the latter, type and amount of the gas (also described as “solvent”) and application conditions such as soaking time durations and depletion rates are critical. The cornerstone of the foamy oil behavior relies on its stability, which depends on parameters such as oil viscosity, temperature, dissolved gas ratio, pressure decline rate, and dissolved gas (solvent) composition. Although the process has been investigated and analyzed for different parameters in the literature, the optimal conditions for an efficient process (mainly foamy oil stability) has not been thoroughly understood, especially for the secondary recovery conditions (cyclic solvent injection, CSI). In this paper, internal and external gas drive mechanisms for foamy oil performance are reviewed in detail. The optimal conditions of the applications were compiled and listed for different primary production and secondary recovery stages. Combination of methane with other gases as a CSI practice was also discussed to accelerate the process and reduce cost in an effort to improve efficiency. It is reported that combining methane injection with air as a secondary recovery method can save up to 51% of solvent gas.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3