Effect of pH on Gelation Time for Xanthan/Cr(III) Gels

Author:

Kolnes Jostein1,Stavland Arne2,Ersdal Turid2

Affiliation:

1. Stavanger College

2. RF-Rogaland Research

Abstract

Abstract The effect of pH on the gelation time of xanthan/Cr(III) have been studied. Few previous studies on the effect of this important reservoir parameter have been reported, and the reported results vary substantially. This is probably due to different conditions used in the experiments. Often pH has not been kept constant during the measurement. When pH has been kept constant, buffers, that can affect gelation rate, have been used. In this study pH is kept constant using an autotitrator, and the results shows several interesting features. Both Cr-nitrate (Cr(NO3)3) and two different forms of Cr-acetate have been used as Cr(III) source. One Cr-acetate system, referred to as Cr(OAc)3, is prepared by mixing acetate with CrCl3 in the ratio 3:1 in brine. The other system is prepared by dissolving basic Cr-acetate (Cr3(OAc)7(OH)2) in brine. It is shown that the pH affects the gelation time significantly less if pH is kept constant with an autotitrator compared to pH control using buffers or no pH control at all. All three chromium sources shows different behavior as pH varies, using the autotitrator method. Gelation time changes most rapidly with pH for the Cr(NO3)3 system, and most slowly for the Cr(OAc)3 system. For both these systems the gelation time increases with decreasing pH, and between pH 4 and 6 the Cr(OAc)3 system gels 2–5 times slower than the Cr(NO3)3 system. However for the Cr3(OAc)7(OH)2 system, the gelation time increases with increasing pH when pH is below 5.5, an decreases with increasing pH when pH is above 5.5. Between pH 4 and 6 the Cr3(OAc)7(OH)2 system gels 2–5 times slower than the Cr(OAc)3 system. Introduction The ability to predict gelation time when applying gel treatment is important, especially when treating producers. If the estimated gelation time is shorter than the actual gelation time, the gelant will be back produced. If the estimated gelation time is longer than the actual gelation time, the gelant cannot be placed as deep as predicted, and the well is shut in for a longer period than necessary. The two most important parameters governing the gelation time of Cr(III) based gelants are temperature and pH. For a xanthan/Cr(III) gel it has been shown that gelation time decreases by a factor of approximately 10 when temperature is increased by 20 C. If chromium is protected with malonic acid even stronger temperature dependence is observed. However, the temperature in the reservoir can be determined quite accurately, at least in producing wells, and in the laboratory the temperature can be controlled to avoid large errors in determining gelation time. With pH it is different. In the reservoir it can be difficult to determine pH since a correct pH value must be measured at reservoir conditions. With a given uncertainty in the reservoir pH it is important to know to which degree gelation time depends on pH. To obtain that, gelation time has to measured at constant pH at different pH values. At the laboratory pH seems difficult to keep constant during gelation. During gelation of HPAM with chromium, pH has been observed to drop by more than one unit. Since for this system the gelation time decreased by a factor of about 10 when pH increased with one unit, buffers were used for pH control. For a xanthan/chromium(III) system, initial rate of crosslink formation has been measured as a function of pH. During these experiments pH was reported to drop during gelation, but no attempt to control pH during gelation was applied. Initial rate of crosslink formation was reported to be inversely proportional to [H+], giving fairly the same effect of pH on gelation time with xanthan as reported above for HPAM. However, for such a comparison it is necessary to assume that the initial crosslink rate is affected by pH the same way as gelation time, which is not always true. P. 753

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3