Analytical Upgridding Method To Preserve Dynamic Flow Behavior

Author:

Hosseini Seyyed Abolfazl1,Kelkar Mohan1

Affiliation:

1. University of Tulsa

Abstract

Summary A geocellular model contains millions of gridblocks and needs to be upscaled before the model can be used as an input for flow simulation. Available techniques for upgridding vary from simple methods such as proportional fractioning to more complicated methods such as maintaining heterogeneities through variance calculations. All these methods are independent of the flow process for which simulation is going to be used, and are independent of well configuration. We propose a new upgridding method that preserves the pressure profile at the upscaled level. It is well established that the more complex the flow process, the more detailed the level of heterogeneity needed in the simulation model. In general, ideal upscaling is the process that preserves the "pressure profile" from the fine-scale model under the applicable flow process. In our method, we upgrid the geological model using simple flow equations in porous media. However, it should be remembered that to obtain a better match between fine scale and coarse scale, we also need to use appropriate upscaling of the reservoir properties. The new method is currently developed for single-phase flow; however, we used it for both single-phase and two-phase flows for 2D and 3D cases. The method differs fundamentally from the other methods that try to preserve heterogeneities. In those methods, gridblocks are combined that have similar velocities (or other properties) by assuming constant pressure drop across the blocks. Instead, we combine the gridblocks that have similar pressure profiles, although to release some of our assumptions such as having constant velocities in gridblocks, we balance our equation with the K2 term. The procedure is analytical and, hence, very efficient, but preserves the pressure profile in the reservoir. The gridblocks (or layers) are combined in a way so that the difference between fine- and coarse-scale pressure profiles is minimized. In addition, we also propose two new criteria that allow us to choose the optimum number of layers more accurately so that a critical level of heterogeneity is preserved. These criteria provide insight into the overall level of heterogeneity in the reservoir and the effectiveness of the layering design. We compare the results of our method with proportional layering and the King et al. method (King et al. 2006) and show that, for the same number of layers, the proposed method captures the results of the fine-scale model better. We show that the layer merging not only depends on the variation in the permeability between the gridblocks (K2 term), but also on the relative magnitude of the permeability values by combining 1/K2 and K2 terms.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3