Development of a New Reservoir Drilling Fluid to Achieve Matrix Injection

Author:

Morrison Alexandra1,Biyani Mahesh1,Kadam Sunita1,Bose Sohini1,Zhou Bill1

Affiliation:

1. Halliburton

Abstract

Abstract Injector wells comprise a small portion of the wells drilled globally; however, they pose unique drilling fluid challenges. Required for pressure support and production maximization, these wells can be costly if the desired level of injectivity cannot be achieved without first flowing them back. Traditional drill-in fluids (DIFs) contain starch and xanthan, the latter is known to impair injectivity due to its poor acid solubility. This paper describes the development of an aqueous reservoir drilling fluid targeted for injector wells. A brine-based reservoir drilling fluid was designed and developed utilizing a novel dual-functional xanthan-free additive to provide the necessary rheological and fluid loss properties without impairing injectivity. A thorough qualification was undertaken to evaluate fluid performance under a variety of conditions. Properties investigated included rheology, static-age stability, fluid loss, lubricant compatibility, and contamination susceptibility. A delayed-action filter cake breaker fluid was also designed and tested for suitability with the new reservoir drilling fluid. Return injectivity measurements were performed on both aloxite discs and core plugs to simulate the ability to achieve matrix injection without flowback. The novel additive provided excellent rheology, suspension, fluid loss control in the reservoir drilling fluid tested in the laboratory. Return injectivity testing demonstrated that the new DIF significantly outperformed existing fluids that contain xanthan or diutan without adjusting the delayed-action breaker formulation. The rheological performance of the new fluid was found to be stable and can be adjusted either though the novel additive concentration itself or through particle size optimization. Evaluation of the spent filter cake breaker effluent demonstrated that the novel additive was fully degraded, as compared to the traditional DIF in which an iodine test indicated the presence of whole starch persisting after several days contact with low-pH breaker. Existing DIF solutions function adequately for oil and gas producing wells given the low lift-off pressure resulting in minimal impairment to productivity. When considering injection wells, superior performance was achieved using this newly developed DIF which provides the potential to reduce well construction costs by eliminating the requirement to flow reservoir fluids back to a production facility before injecting.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3