Decline-Curve Analysis

Author:

Gentry Robert W.1

Affiliation:

1. Edinger Inc.

Abstract

This paper explains a simple and effective method for graphically solving all three types of production decline. The three types of declines are:exponentialhyperbolic, andharmonic. The mathematical development of these curves was by Arps. Decline curves are one of the most extensively used forms of data analysis employed in the evaluation of oil properties. Often future production is extrapolated as a straight line on semilog paper (exponential or constant-percentage decline) because this type of decline is the easiest to handle mathematically and graphical. This is done irrespective of the fact that several investigators have reported that this type of decline is rare and that actual oil production usually follows a hyperbolic decline. production usually follows a hyperbolic decline. However, the hyperbolic decline is difficult to analyze mathematically or graphically. The most recent method utilizes transparencies, as proposed by Slider. The method outlined below greatly simplifies the solution and extrapolation of decline curves. The first four columns of Table 1 list the rate:time and cumulative-production:rate relationships as developed by Arps. The equations are all solutions of the differential equation D = Kq = - (dq/dt)/q. In each instance two unknowns must be calculated from the two relationships. They are the decline exponent n and the initial decline rate Di. The third unknown, qi, can be obtained from the production history of the well. First. the rate:time relationship is manipulated to solve for the value of Dit in terms of the ratio (qi/qt). These relationships are shown in Column 5 of Table 1. Next, the rate:time relationship is solved for Di, and this value of Di is substituted into the cumulative-production:rate relationship. This relationship is then solved for the value of Qt/(qit) in terms of (qi/qt), These relationships are shown in Column 6 of Table 1. Two graphs can then be constructed by selecting a value for n and then substituting values of (qi/qt into the relationships. A curve on each graph for the selected value of n will be produced. This can be done for any desired number of n values from 0 n 1. (See Figs. 1 and 2.) These curves can then be used to analyze and extrapolate decline curves from actual production history. P. 38

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3