Marlin Failure Analysis and Redesign: Part 3—VIT Completion With Real-Time Monitoring

Author:

Gosch S. W.1,Horne D. J.1,Pattillo P. D.1,Sharp J. W.1,Shah P. C.2

Affiliation:

1. BP America

2. Landmark Graphics

Abstract

The redesign solution for the batch-drilled wells remaining after the deformation of the Marlin Well A-2 production tieback and tubing was vacuum-insulated tubing (VIT). VIT implementation, however, required a number of computational and experimental innovations. To ensure well survival, a distributed temperature-monitoring system was developed and evaluated during full-scale VIT testing. Fiber-optic cable run on completions continuously monitors the production-annulus temperature profile. The monitoring system has also proved to be a valuable quality-assurance measure for special annular gels used to minimize conduction and natural convection in the production annulus. Abstract Following the failure of the initial well in the Marlin field,1 the preferred solution for completing the remaining wells was to control wellbore temperature by means of VIT.2 Implementation of VIT required a number of computational and experimental innovations, including: Provision for insulating the tubing couplings, the source of up to 90% of VIT heat loss. Detailed flow-loop temperature profiles with both axial and radial probes traversing the annulus outside the VIT. These profiles supplemented the conventional values of the overall heat-transfer coefficient and thermal conductivity obtained from the flow-loop measurements. VIT performance, as measured experimentally, must exceed both thermal and mechanical design bases. Because well survival depends on proper VIT performance, a distributed temperature-monitoring system was developed and evaluated during full-scale testing. On the Marlin tension-leg platform (TLP), fiber-optic cable is run in each well along the length of the VIT to monitor the production-annulus temperature profile continuously. A software system was also developed to feed binary fiber data to an integrated thermal-simulator casing-design software package that calculates safety factors for the B and C annuli. These real-time safety factors interface with the platform alarm system and are continually monitored by operators. If a low safety factor is calculated, a well will be shut in. In addition to feeding the platform alarm system, the software provides data to a web-based plotting program. If a single VIT joint loses its insulating properties, this specific joint can be identified, and appropriate action can be taken. The monitoring system has also proved to be a valuable quality-assurance measure for special annular gels used to minimize conduction and natural convection in the production annulus. This paper focuses on the value of the combined VIT and fiber/software monitoring system as a means of both controlling and observing well thermal behavior. Typical temperature vs. depth curves are used to illustrate the detailed information retrieved.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3