Multi-Component Physical Sorption Investigation Of Gas Shales at the Core Level

Author:

Aljamaan Hamza1

Affiliation:

1. Stanford University

Abstract

Abstract The purpose of this paper is to investigate multi-component sorption in gas shales at the core level in order to better understand the connectivity and flow mechanism in these tight rocks. Such data allow us to recognize the sensitivity of shale physical properties to the gas mixture saturating the pore space. To investigate multi-component gas sorption at the core level two experimental setups were constructed in house: a high precision volumetric gas adsorption apparatus and a dynamic breakthrough apparatus. The novelty in the volumetric apparatus lies in the thermodynamically closed system design in which simultaneous measurements of three fundamental rock properties at the core level are obtained including porosity, permeability and excess adsorption. Initial experiments using both apparatuses were conducted to measure the sorption properties of samples from the Haynesville and Barnett shale plays. Different gases were used to assess the preferential adsorption of each component in a gas mixture. Utilizing the volumetric apparatus, excess sorption measurements were carried out on three intact shale core samples with pure gases including N2, CH4, and CO2. Absolute sorption calculations confirmed the preferential sorption of CO2 in shales compared to other gases. The Barnett sample in particular adsorbed about four and a half times more CO2 than CH4. N2 and CH4 sorption were fitted with a Langmuir model where a monolayer sorption is assumed. The, CO2 sorption isotherm did not follow the standard Langmuir model and was fitted with an N-BET model where multilayer sorption is occurring. With these pure isotherm measurements, mixed gas sorption measurements were also carried out on shales for the first time, to quantify the recovery and selectivity of each component in a gas mixture. Results show a preferential adsorption of methane over nitrogen as indicated by an increasing selectivity coefficient. Dynamic breakthrough measurements were also carried out for the first time on shales. Measurements were conducted with methane on both core and powder-sized samples. Results indicate a methane capacity with powder that is 5 times higher in comparison to core level measurements. These experimental results shed light on the importance of carrying out adsorption measurements at the core level for accurate gas in place estimations.

Publisher

SPE

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations;Journal of Petroleum Science and Engineering;2021-12

2. Index;Unconventional Reservoir Geomechanics;2019-05-16

3. Managing the Risk of Injection-Induced Seismicity;Unconventional Reservoir Geomechanics;2019-05-16

4. Production and Depletion;Unconventional Reservoir Geomechanics;2019-05-16

5. Geomechanics and Stimulation Optimization;Unconventional Reservoir Geomechanics;2019-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3