Evaluation of Historical and Ongoing Double Displacement Process in Yates Field Unit

Author:

Mohebbinia Saeedeh1,Pennell Stephen Peter1,Valdez Raul1,Eskandaridalvand Kiomars1

Affiliation:

1. Kinder Morgan Inc.

Abstract

Abstract Implementation of a second Double Displacement Process (DDP2) has been evaluated for Yates Field Unit (YFU). A DDP2 Demonstration Area Project has been designed to test DDP2 in a mature, high recovery area of the field. A detailed, geologically based reservoir description was used to build a simulation model for the DDP2 pilot area to study the DDP process and evaluate DDP2 performance. Initial saturations and relative permeability curves were generated based on a capillary pressure based Saturation Height Function (SHF) study. The fracture system was simulated using a hybrid dual porosity/permeability system. A 9-component equation of state (EOS) was used to model the YFU fluid properties. Capillary pressure of imbibition is used to capture the effect of hysteresis and oil trapping in the zones invaded by the aquifer during primary depletion. The simulation model has been tuned against historical performance since 1927, focusing on the first DDP process (DDP1) implemented over 1992-2000. Matching historical production/injection, field pressure and fluid contacts data were the history matching objectives. The DDP2 pilot project will include lowering 31 Horizontal Drain Hole (HDH) lateral completions by 25 feet to lower the contacts. The tuned model has been used to generate flow streams for different forecasting scenarios utilizing the DDP2 process. Forecast results show incremental oil recovery by lowering the contacts by 25 feet during the DDP2 phase. This paper presents a comprehensive study of YFU DDP1 process and evaluation of the second DDP process by a 3D numerical simulation model. The simulation model is used to improve understanding of the complex Gas-Oil Gravity Drainage (GOGD) and Gas Assisted Gravity Drainage (GAGD), and provide forecasts for the DDP2 process. Success of the pilot will result in extending the field life another 10-20 years.

Publisher

SPE

Reference7 articles.

1. Yates Data Gathering Log Program Report;Liu,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3